Skip to main content

Passive Devices for Upper Limb Training

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

About five million people in North America alone have weak or paralyzed upper limbs (UL) due to stroke or spinal cord injury. Motor rehabilitation can improve hand and arm function in many of these people, but in the current healthcare climate, the time and resources devoted to physical and occupational therapy after injury are inadequate. This represents an opportunity for technology to be introduced that can take over some of the supervisory functions of therapists, provide entertaining exercise therapy, and allow remote supervision of exercise training performed in the home. Over the last 10 years, many research groups have been developing robotic devices for exercise therapy, as well as other methods such as electrical stimulation of muscles. Robotic devices tend to be expensive, and recent studies have raised some doubt as to whether assistance to movements is even necessary, as motor gains evidently depend largely on the efforts made by the participant. This chapter reviews the evidence for spontaneous recovery, the means and mechanisms of conventional exercise therapy, the role of robotics, and the advent of affordable passive devices and voluntarily triggered functional electrical stimulation. It is argued that exercise therapy on passive devices, in some cases remotely supervised over the Internet and augmented with functional electrical stimulation, is now an affordable and important modality of occupational and physical therapy. Quantitative UL function tests performed with these devices can provide crucial guidance on the selection of patients most likely to benefit from training and exercise, maximizing the meaningful use of scarce healthcare resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  2. van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke. 1999;30(11):2369–75.

    Article  PubMed  Google Scholar 

  3. Noonan VK, Fingas M, Farry A, Baxter D, Singh A, Fehlings MG, et al. Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology. 2012;38(4):219–26.

    Article  PubMed  Google Scholar 

  4. Wolf SL, Newton H, Maddy D, Blanton S, Zhang Q, Winstein CJ, et al. The excite trial: relationship of intensity of constraint induced movement therapy to improvement in the wolf motor function test. Restor Neurol Neurosci. 2007;25(5–6):549–62.

    PubMed  Google Scholar 

  5. Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A. A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke. 2006;37(4):1045–9.

    Article  PubMed  Google Scholar 

  6. Page SJ, Sisto SA, Levine P, Johnston MV, Hughes M. Modified constraint induced therapy: a randomized feasibility and efficacy study. J Rehabil Res Dev. 2001;38(5):583–90.

    CAS  PubMed  Google Scholar 

  7. Harris JE, Eng JJ, Miller WC, Dawson AS. A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke. 2009;40(6):2123–8.

    Article  PubMed  Google Scholar 

  8. Winstein C, Lewthwaite R, Blanton SR, Wolf LB, Wishart L. Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. J Neurol Phys Ther. 2014;38(3):190–200.

    Article  PubMed  Google Scholar 

  9. Volpe BT, Huerta PT, Zipse JL, Rykman A, Edwards D, Dipietro L, et al. Robotic devices as therapeutic and diagnostic tools for stroke recovery. Arch Neurol. 2009;66(9):1086–90.

    Article  PubMed  Google Scholar 

  10. Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–5.

    CAS  PubMed  Google Scholar 

  11. Vodovnik L. Therapeutic effects of functional electrical stimulation of extremities. Med Biol Eng Comput. 1981;19(4):470–8.

    Article  CAS  PubMed  Google Scholar 

  12. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gritsenko V, Chhibber S, Prochazka A. Automated FES-assisted exercise therapy for hemiplegic hand function. Soc Neurosci Abstr. 2001;27:210–20.

    Google Scholar 

  14. Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC. Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans Neural Syst Rehabil Eng. 2002;10(2):102–8.

    Article  PubMed  Google Scholar 

  15. Buick A, Kowalczewski J, Carson R, Prochazka A. Tele-supervised FES-assisted exercise for hemiplegic upper limb. IEEE Trans Neural Syst Rehabil Eng. 2015;24:79–87.

    Google Scholar 

  16. Kowalczewski J, Chong SL, Galea M, Prochazka A. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair. 2011;25(5):412–22.

    Article  PubMed  Google Scholar 

  17. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.

    Article  PubMed  Google Scholar 

  18. Curt A, Van Hedel HJ, Klaus D, Dietz V. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma. 2008;25(6):677–85.

    Article  PubMed  Google Scholar 

  19. Kwakkel G, Veerbeek JM, van Wegen EE, Nijland R, Harmeling-van der Wel BC, Dippel DW. Predictive value of the NIHSS for ADL outcome after ischemic hemispheric stroke: does timing of early assessment matter? J Neurol Sci. 2010;294(1-2):57–61.

    Article  PubMed  Google Scholar 

  20. Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9(12):1228–32.

    Article  PubMed  Google Scholar 

  21. Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, et al. Anatomy of stroke injury predicts gains from therapy. Stroke. 2011;42(2):421–6.

    Article  PubMed  Google Scholar 

  22. Houwink A, Nijland RH, Geurts AC, Kwakkel G. Functional recovery of the paretic upper limb after stroke: who regains hand capacity? Arch Phys Med Rehabil. 2013;94(5):839–44.

    Article  PubMed  Google Scholar 

  23. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.

    CAS  PubMed  Google Scholar 

  24. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–8.

    Article  CAS  PubMed  Google Scholar 

  25. Teasell R, Foley N, Richardson M, Allen L, Speechley M. Evidence-based review of stroke rehabilitation. 7. Outpatient stroke rehabilitation. Evidence-based review of stroke rehabilitation. 2013;7:1–41.

    Google Scholar 

  26. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45(3):190–205.

    Article  CAS  PubMed  Google Scholar 

  27. Nudo RJ, Jenkins WM, Merzenich MM, Prejean T, Grenda R. Neurophysiological correlates of hand preference in primary motor cortex of adult squirrel monkeys. J Neurosci. 1992;12(8):2918–47.

    CAS  PubMed  Google Scholar 

  28. Merzenich MM, Jenkins WM. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther. 1993;6:89–104.

    Article  CAS  PubMed  Google Scholar 

  29. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224:591–605.

    Article  CAS  PubMed  Google Scholar 

  30. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807.

    CAS  PubMed  Google Scholar 

  31. Barreca S. Management of the post stroke hemiplegic arm and hand: treatment recommendations of the 2001 consensus panel. Heart and Stroke Foundation of Ontario. Toronto; 2001.

    Google Scholar 

  32. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(8):852–7.

    Article  CAS  PubMed  Google Scholar 

  33. Michaelsen SM, Dannenbaum R, Levin MF. Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke. 2006;37(1):186–92.

    Article  PubMed  Google Scholar 

  34. Michaelsen SM, Luta A, Roby-Brami A, Levin MF. Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke. 2001;32(8):1875–83.

    Article  CAS  PubMed  Google Scholar 

  35. Taub E, Crago JE, Burgio LD, Groomes TE, Cook 3rd EW, DeLuca SC, et al. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J Exp Anal Behav. 1994;61(2):281–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van der Lee JH, Snels IA, Beckerman H, Lankhorst GJ, Wagenaar RC, Bouter LM. Exercise therapy for arm function in stroke patients: a systematic review of randomized controlled trials. Clin Rehabil. 2001;15(1):20–31.

    Article  PubMed  Google Scholar 

  37. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18(8):833–62.

    Article  PubMed  Google Scholar 

  38. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45(7):2053–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, et al. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): a single-center RCT. Neurology. 2009;73(3):195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foley N, Mehta S, Jutai J, Staines E, Teasell R. Evidence-based review of stroke rehabilitation. 10. Upper extremity interventions. Evidence-based review of stroke rehabilitation [Internet]. 2013;16:1–163. Available from: http://www.ebrsr.com/modules.html.

  41. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.

    Article  PubMed  Google Scholar 

  42. Dickstein R, Hocherman S, Pillar T, Shaham R. Stroke rehabilitation. Three exercise therapy approaches. Phys Ther. 1986;66(8):1233–8.

    CAS  PubMed  Google Scholar 

  43. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  44. Taub E. Movement in nonhuman primates deprived of somatosensory feedback. Exerc Sport Sci Rev. 1976;4:335–74.

    Article  CAS  PubMed  Google Scholar 

  45. Taub E, Miller NE, Novack TA, Cook 3rd EW, Fleming WC, Nepomuceno CS, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74(4):347–54.

    CAS  PubMed  Google Scholar 

  46. Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252(5014):1857–60.

    Article  CAS  PubMed  Google Scholar 

  47. Richards LG, Stewart KC, Woodbury ML, Senesac C, Cauraugh JH. Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia. 2008;46(1):3–11.

    Article  PubMed  Google Scholar 

  48. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104.

    Article  CAS  PubMed  Google Scholar 

  49. Daniel L, Howard W, Braun D, Page SJ. Opinions of constraint-induced movement therapy among therapists in southwestern Ohio. Top Stroke Rehabil. 2012;19(3):268–75.

    Article  PubMed  Google Scholar 

  50. Thrane G, Askim T, Stock R, Indredavik B, Gjone R, Erichsen A, et al. Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial. Neurorehabil Neural Repair. 2014. doi:10.1177/1545968314558599.

    PubMed  Google Scholar 

  51. Page SJ, Levine P. Modified constraint-induced therapy in patients with chronic stroke exhibiting minimal movement ability in the affected arm. Phys Ther. 2007;87(7):872–8.

    Article  PubMed  Google Scholar 

  52. Page SJ, Levine P. Modified constraint-induced therapy extension: using remote technologies to improve function. Arch Phys Med Rehabil. 2007;88(7):922–7.

    Article  PubMed  Google Scholar 

  53. Nijland R, Kwakkel G, Bakers J, van Wegen E. Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke: a systematic review. Int J Stroke. 2011;6(5):425–33.

    Article  PubMed  Google Scholar 

  54. Winstein CJ, Wolf SL, Dromerick AW, Lane CJ, Nelsen MA, Lewthwaite R, et al. Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE): a randomized controlled trial protocol. BMC Neurol. 2013;13:5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31(10):2390–5.

    Article  CAS  PubMed  Google Scholar 

  56. Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292(15):1853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cauraugh JH, Kim SB, Duley A. Coupled bilateral movements and active neuromuscular stimulation: intralimb transfer evidence during bimanual aiming. Neurosci Lett. 2005;382(1–2):39–44.

    Article  CAS  PubMed  Google Scholar 

  58. Whitall J, Waller SM, Sorkin JD, Forrester LW, Macko RF, Hanley DF, et al. Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial. Neurorehabil Neural Repair. 2011;25(2):118–29.

    Article  PubMed  Google Scholar 

  59. Summers JJ, Kagerer FA, Garry MI, Hiraga CY, Loftus A, Cauraugh JH. Bilateral and unilateral movement training on upper limb function in chronic stroke patients: a TMS study. J Neurol Sci. 2007;252(1):76–82.

    Article  PubMed  Google Scholar 

  60. Cauraugh JH, Coombes SA, Lodha N, Naik SK, Summers JJ. Upper extremity improvements in chronic stroke: coupled bilateral load training. Restor Neurol Neurosci. 2009;27(1):17–25.

    PubMed  PubMed Central  Google Scholar 

  61. Lin KC, Chang YF, Wu CY, Chen YA. Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabil Neural Repair. 2009;23(5):441–8.

    Article  PubMed  Google Scholar 

  62. Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):58–65.

    Article  PubMed  Google Scholar 

  63. Salter RB. History of rest and motion and the scientific basis for early continuous passive motion. Hand Clin. 1996;12(1):1–11.

    CAS  PubMed  Google Scholar 

  64. Dirette D, Hinojosa J. Effects of continuous passive motion on the edematous hands of two persons with flaccid hemiplegia. Am J Occup Ther. 1994;48(5):403–9.

    Article  CAS  PubMed  Google Scholar 

  65. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54(4):443–6.

    Article  CAS  PubMed  Google Scholar 

  66. Hogan N, Krebs HI, Rohrer B, Palazzolo JJ, Dipietro L, Fasoli SE, et al. Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J Rehabil Res Dev. 2006;43(5):605–18.

    Article  PubMed  Google Scholar 

  67. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  CAS  PubMed  Google Scholar 

  68. Cramer SC. Brain repair after stroke. N Engl J Med. 2010;362(19):1827–9.

    Article  CAS  PubMed  Google Scholar 

  69. Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke. 2013;44(12):3414–21.

    Article  PubMed  Google Scholar 

  70. Tyryshkin K, Coderre AM, Glasgow JI, Herter TM, Bagg SD, Dukelow SP, et al. A robotic object hitting task to quantify sensorimotor impairments in participants with stroke. J Neuroeng Rehabil. 2014;11(1):47.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Johnson MJ, Feng X, Johnson LM, Winters JM. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. J Neuroeng Rehabil. 2007;4:6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ruparel R, Johnson MJ, Strachota E, McGuire J, Tchekanov G. Evaluation of the TheraDrive system for robot/computer assisted motivating rehabilitation after stroke. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:811–4.

    PubMed  Google Scholar 

  73. Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 2007;45(9):887–900.

    Article  PubMed  Google Scholar 

  74. Nef T, Riener R. Three-dimensional multi-degree-of-freedom Arm therapy robot (ARMin). In: Dietz V, Nef T, Rymer WZ, editors. Neurorehabilitation technology. London: Springer; 2012. p. 141–57.

    Chapter  Google Scholar 

  75. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.

    Article  PubMed  Google Scholar 

  76. Popescu VG, Burdea GC, Bouzit M, Hentz VR. A virtual-reality-based telerehabilitation system with force feedback. IEEE Trans Inf Technol Biomed. 2000;4(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  77. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.

    Article  CAS  PubMed  Google Scholar 

  78. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):356–66.

    Article  PubMed  Google Scholar 

  79. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(Pt 2):425–37.

    Article  PubMed  Google Scholar 

  80. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sivan M, O’Connor RJ, Makower S, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011;43(3):181–9.

    Article  PubMed  Google Scholar 

  82. Brokaw EB, Black I, Holley RJ, Lum PS. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):391–9.

    Article  PubMed  Google Scholar 

  83. Frick EM, Alberts JL. Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Phys Ther. 2006;86(10):1378–86.

    Article  PubMed  Google Scholar 

  84. Kutner NG, Zhang R, Butler AJ, Wolf SL, Alberts JL. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Phys Ther. 2010;90(4):493–504.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev. 2006;43(5):619–30.

    Article  PubMed  Google Scholar 

  86. Reinkensmeyer DJ, Akoner O, Ferris DP, Gordon KE. Slacking by the human motor system: computational models and implications for robotic orthoses. Conf Proc IEEE Eng Med Biol Soc. 2009;1:2129–32.

    Google Scholar 

  87. Allen D. You’re never too old for a Wii. Nurs Older People. 2007;19(8):8.

    Article  Google Scholar 

  88. Cowley AD, Minnaar G. New generation computer games: watch out for Wii shoulder. BMJ. 2008;336(7636):110.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther. 2008;88(10):1196–207.

    Article  PubMed  Google Scholar 

  90. Graves LE, Ridgers ND, Stratton G. The contribution of upper limb and total body movement to adolescents’ energy expenditure whilst playing Nintendo Wii. Eur J Appl Physiol. 2008;104(4):617–23.

    Article  PubMed  Google Scholar 

  91. Robinson RJ, Barron DA, Grainger AJ, Venkatesh R. Wii knee. Emerg Radiol. 2008;15(4):255–7.

    Article  PubMed  Google Scholar 

  92. Saposnik G, Mamdani M, Bayley M, Thorpe KE, Hall J, Cohen LG, et al. Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int J Stroke. 2010;5(1):47–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yin CW, Sien NY, Ying LA, Chung SF, Tan May Leng D. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28(11):1107–14.

    Article  PubMed  Google Scholar 

  94. Lucca LF. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J Rehabil Med. 2009;41(12):1003–100.

    Article  PubMed  Google Scholar 

  95. Dobkin BH. Confounders in rehabilitation trials of task-oriented training: lessons from the designs of the EXCITE and SCILT multicenter trials. Neurorehabil Neural Repair. 2007;21(1):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89.

    Article  PubMed  Google Scholar 

  97. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    Article  PubMed  Google Scholar 

  98. Colomer C, Baldovi A, Torrome S, Navarro MD, Moliner B, Ferri J, et al. Efficacy of Armeo(R) Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurologia. 2013;28(5):261–7.

    Article  CAS  PubMed  Google Scholar 

  99. Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population. IEEE Int Conf Rehabil Robot. 2011;2011:5975400.

    PubMed  Google Scholar 

  100. Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord. 2012;50(3):220–6.

    Article  CAS  PubMed  Google Scholar 

  101. Prange GB, Jannink MJ, Stienen AH, van der Kooij H, Ijzerman MJ, Hermens HJ. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabil Neural Repair. 2009;23(5):478–85.

    Article  CAS  PubMed  Google Scholar 

  102. Krabben T, Prange GB, Molier BI, Stienen AH, Jannink MJ, Buurke JH, et al. Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study. J Neuroeng Rehabil. 2012;9:44.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Prange GB, Kottink AI, Buurke JH, Eckhardt MM, van Keulen-Rouweler BJ, Ribbers GM, et al. The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2015;29(2):174–82.

    Article  PubMed  Google Scholar 

  104. Lum PS, Taub E, Schwandt D, Postman M, Hardin P, Uswatte G. Automated Constraint-Induced Therapy Extension (AutoCITE) for movement deficits after stroke. J Rehabil Res Dev. 2004;41(3A):249–58.

    Article  PubMed  Google Scholar 

  105. Taub E, Lum PS, Hardin P, Mark VW, Uswatte G. AutoCITE: automated delivery of CI therapy with reduced effort by therapists. Stroke. 2005;36(6):1301–4.

    Article  PubMed  Google Scholar 

  106. Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain. 2008;131(Pt 5):1381–90.

    PubMed  Google Scholar 

  107. Barker RN, Brauer SG, Carson RG. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial. Stroke. 2008;39(6):1800–7.

    Article  PubMed  Google Scholar 

  108. Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zondervan DK, Augsburger R, Bodenhoefer B, Friedman N, Reinkensmeyer DJ, Cramer SC. Machine-based, self-guided home therapy for individuals with severe arm impairment after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2015;29(5):395–406.

    Article  PubMed  Google Scholar 

  110. Feys H, De Weerdt W, Verbeke G, Steck GC, Capiau C, Kiekens C, et al. Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial. Stroke. 2004;35(4):924–9.

    Article  PubMed  Google Scholar 

  111. Prochazka A, Kowalczewski J. A fully automated, quantitative test of upper limb function. J Mot Behav. 2015;47(1):19–28.

    Article  PubMed  Google Scholar 

  112. Kowalczewski J. Upper extremity neurorehabilitation. Edmonton: University of Alberta; 2009.

    Google Scholar 

  113. Buick A, Unterschultz L, Kowalczewski J, Carson RG, Prochazka A, editors. Use of accelerometers and MEPs to assess corticospinal excitability following novel combined therapy in chronic stroke. Society for Neuroscience 42nd annual general meeting; New Orleans; 2012.

    Google Scholar 

  114. Foley N, Mehta S, Jutai J, Staines E, Teasell R. Evidence-based review of stroke rehabilitation. 10. Upper extremity interventions. Toronto: Canadian Stroke Network; 2013.

    Google Scholar 

  115. Baker L, Yeh C, Wilson D, Waters RL. Electrical stimulation of wrist and fingers for hemiplegic patients. Phys Ther. 1979;59:1495–9.

    CAS  PubMed  Google Scholar 

  116. Waters R, Bowman B, Baker L, Benton L, Meadows P. Treatment of hemiplegic upper extremity using electrical stimulation and biofeedback training. In: Advances in external control of human extremities, vol. 7. Belgrade: Yugoslav Committee for Electronics and Automation; 1981. p. 251–66.

    Google Scholar 

  117. Taylor PN, Burridge JH, Hagan SA, Chapple P, Swain ID, editors. Improvement in hand function and sensation in chronic stroke patients following electrical stimulation exercises. A retrospective clinical audit. First annual conference of the international FES Society; 1996; Cleveland.

    Google Scholar 

  118. Vodovnik L, Bajd T, Kralj A, Gracanin F, Strojnik P. Functional electrical stimulation for control of locomotor systems. CRC Crit Rev Bioeng. 1981;6(2):63–131.

    CAS  Google Scholar 

  119. Taylor P, Burridge J, Dunkerley A, Wood D, Norton J, Singleton C, et al. Clinical audit of 5 years provision of the Odstock dropped foot stimulator. Artif Organs. 1999;23(5):440–2.

    Article  CAS  PubMed  Google Scholar 

  120. Stein RB, Chong S, Everaert DG, Rolf R, Thompson AK, Whittaker M, et al. A multicenter trial of a footdrop stimulator controlled by a tilt sensor. Neurorehabil Neural Repair. 2006;20(3):371–9.

    Article  PubMed  Google Scholar 

  121. Hansen GO. EMG-controlled functional electrical stimulation of the paretic hand. Scand J Rehabil Med. 1979;11:189–93.

    Google Scholar 

  122. Heckmann J, Mokrusch T, Kroeckel A, Warnke S, von Stockert T, Neundoerfer B. Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Eur J Phys Med Rehabil. 1997;7:138–41.

    Google Scholar 

  123. Francisco G, Chae J, Chawla H, Kirshblum S, Zorowitz R, Lewis G, et al. Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil. 1998;79(5):570–5.

    Article  CAS  PubMed  Google Scholar 

  124. Cauraugh JH, Kim S. Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke. 2002;33(6):1589–94.

    Article  PubMed  Google Scholar 

  125. Chae J. Neuromuscular electrical stimulation for motor relearning in hemiparesis. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S93–109.

    Article  PubMed  Google Scholar 

  126. de Kroon JR, Ijzerman MJ, Chae J, Lankhorst GJ, Zilvold G. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. J Rehabil Med. 2005;37(2):65–74.

    Article  PubMed  Google Scholar 

  127. Gritsenko V, Prochazka A. A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function. Arch Phys Med Rehabil. 2004;85(6):881–5.

    Article  PubMed  Google Scholar 

  128. Popovic D, Popovic M, Sinkjaer T, Stefanovic A, Schwirtlich L. Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study. Can J Physiol Pharmacol. 2004;82(8–9):749–56.

    Article  CAS  PubMed  Google Scholar 

  129. Popovic M, Thrasher T, Zivanovic V, Takaki J, Hajek V. Neuroprosthesis for retraining reaching and grasping functions in severe hemiplegic patients. Neuromodulation. 2005;8:58–72.

    Article  PubMed  Google Scholar 

  130. Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neural Repair. 2007;21(3):207–15.

    Article  PubMed  Google Scholar 

  131. Kowalczewski J, Gritsenko V, Ashworth N, Ellaway P, Prochazka A. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Arch Phys Med Rehabil. 2007;88(7):833–9.

    Article  PubMed  Google Scholar 

  132. Kowalczewski JA, Prochazka A, Chong SL, editors. Home based upper extremity rehabilitation in spinal cord injured patients. Society for Neuroscience Abstracts; San Diego; 2007.

    Google Scholar 

  133. Weingarden HP, Zeilig G, Heruti R, Shemesh Y, Ohry A, Dar A, et al. Hybrid functional electrical stimulation orthosis system for the upper limb: effects on spasticity in chronic stable hemiplegia. Am J Phys Med Rehabil. 1998;77(4):276–81.

    Article  CAS  PubMed  Google Scholar 

  134. Nathan RH. US Patent #5,330,516. Device for generating hand function. US Patent Office. 1994:15 claims, 6 drawing sheets.

    Google Scholar 

  135. Prochazka A. Inventor garment having controller that is activated by mechanical impact. Canada, WO 99/190191997.

    Google Scholar 

  136. Popovic D, Stojanovic A, Pjanovic A, Radosavljevic S, Popovic M, Jovic S, et al. Clinical evaluation of the bionic glove. Arch Phys Med Rehabil. 1999;80(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  137. Kowalczewski J, Chong S, Prochazka A, editors. Improving tetraplegic hand function with FES and in-home tele-rehabilitation. Treatment strategies for SCI: from biology to clinical reality. Banff: University of Alberta; 2010.

    Google Scholar 

  138. Prochazka A. Neuroprosthetics. In: Edelle C, Field-Fote P, editors. Spinal cord injury rehabilitation. Philadelphia: FA Davis Company; 2009. p. 87–99.

    Google Scholar 

  139. Allington J, Spencer SJ, Klein J, Buell M, Reinkensmeyer DJ, Bobrow J. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1579–82.

    PubMed  Google Scholar 

  140. Andrews K, Stewart J. Stroke recovery: he can but does he? Rheumatol Rehabil. 1979;18(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  141. Kowalczewski J, Prochazka A. Technology improves upper extremity rehabilitation. Prog Brain Res. 2011;192:147–59.

    Article  PubMed  Google Scholar 

  142. Wolf SL, Sahu K, Bay RC, Buchanan S, Reiss A, Linder S, et al. The HAAPI (Home Arm Assistance Progression Initiative) trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair. 2015. doi:10.1177/1545968315575612.

    Google Scholar 

  143. Cohn ER, editor. Telerehabilitation in 2012: policy and infrastructure challenges to ubiquitous deployment across the United States. RESNA annual conference – 2012; 2012; Baltimore: http://web.resna.org/conference/proceedings/2012/PublicPolicy/TELEREHABILITATIONIN2012.html.

  144. Johnston MV, Sherer M, Whyte J. Applying evidence standards to rehabilitation research. Am J Phys Med Rehabil. 2006;85(4):292–309.

    Article  PubMed  Google Scholar 

  145. Wolf SL, Winstein CJ, Miller JP, Blanton S, Clark PC, Nichols-Larsen D. Looking in the rear view mirror when conversing with back seat drivers: the EXCITE trial revisited. Neurorehabil Neural Repair. 2007;21(5):379–87.

    Article  PubMed  Google Scholar 

  146. Seitz RJ, Kammerzell A, Samartzi M, Jander S, Wojtecki L, et al. Monitoring of visuomotor coordination in healthy subjects and patients with stroke and Parkinson’s disease: an application study using the PABLO®-device. Int J Neurorehabil. 2014;1:113. doi:10.4172/2376-0281.1000113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Prochazka BEng, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Prochazka, A. (2016). Passive Devices for Upper Limb Training. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics