Skip to main content

The Protozoa of Soda Lakes in East Africa

  • Chapter
  • First Online:
Soda Lakes of East Africa

Abstract

Protozoa, mainly ciliates, have been studied in East African soda lakes (EASL) since the 1980s. A few studies have noted the presence of flagellates, including Chlamydomonas, Ceratium and chilomonids. Amoebae have been even less studied, although Biomyxa and Platamoeba have been observed. The abundance, biomass and production of ciliates in the EASL are higher than in tropical freshwater, subtropical and temperate lakes. This is attributed to the high phytoplankton and bacterial abundance in these lakes. Accordingly, the ciliate fauna is dominated by herbivorous and bacterivorous taxa. Estimates of growth rates for ciliates in EASL range from 0.18 to 4.75 day−1. High water temperatures allow for these fast growth rates, which together with high biomass lead to high secondary production. Some of this production can reach higher trophic organisms such as zooplankton and fish, while some is consumed by predators within the microbial food web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian R, Frost TM (1993) Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three differently sized species. J Plankton Res 15:643–658

    Article  Google Scholar 

  • Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell C, Shouche YS (2013) Microbiology of Lonar Lake and other soda lakes. Int J Syst Evol Microbiol 7:468–476

    Google Scholar 

  • Banse K (1974) On the interpretation of data for the carbon-to-nitrogen ratio of phytoplankton. Limnol Oceanogr 19:695–699

    Article  CAS  Google Scholar 

  • Banse K (1982) Cell volume, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol Oceanogr 27:1059–1071

    Article  Google Scholar 

  • Barbieri SM, Orlando MJL (1989) Ecological studies on the planktonic protozoa of a eutrophic reservoir (Rio Grande Reservoir—Brazil). Hydrobiologia 183:1–10

    Article  CAS  Google Scholar 

  • Bark AW (1981) The temporal and spatial distribution of planktonic and benthic protozoan communities in a small productive lake. Hydrobiologia 85:239–255

    Article  Google Scholar 

  • Beadle LC (1981) The inland waters of tropical Africa. An introduction to tropical limnology, 2nd edn. Longman, London

    Google Scholar 

  • Beaver JR, Crisman TL (1982) The trophic response of ciliated protozoans in freshwater lakes. Limnol Oceanogr 22:246–253

    Article  Google Scholar 

  • Beaver JR, Crisman TL (1989a) The role of ciliated protozoa in pelagic freshwater ecosystems. Microbiol Ecol 17:111–136

    Article  CAS  Google Scholar 

  • Beaver JR, Crisman TL (1989b) Analysis of the community structure of planktonic ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174:177–184

    Article  CAS  Google Scholar 

  • Beaver JR, Crisman TL (1990) Seasonality of planktonic ciliated protozoa in 20 subtropical Florida lakes of varying trophic state. Hydrobiologia 190:127–135

    Article  Google Scholar 

  • Bick H (1972) Ciliated protozoa. An illustrated guide to the species used as biological indicators in freshwater biology. World Health Organization, Geneva

    Google Scholar 

  • Bloem J, Bär-Gilissen M-JB (1989) Bacterial activity and protozoan grazing potential in a stratified lake. Limnol Oceanogr 34:297–309

    Article  Google Scholar 

  • Branstrator DK, Lehman JT, Ndawula LM (1996) Zooplankton dynamics in Lake Victoria. In: Johnson TC, Odada EO (eds) The limnology, climatology and paleoclimatology of the past African lakes. Gordon and Breach, Toronto, pp 337–355

    Google Scholar 

  • Burian A, Kaggwa M, Schagerl M, Yasindi AW (2013) Microzooplankton feeding behaviour: grazing on the microbial and the classical food web of African soda lakes. Hydrobiologia 710:61–72

    Article  CAS  Google Scholar 

  • Burian A, Kainz MJ, Schagerl M, Yasindi AW (2014) Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers. Freshw Biol 59:1257–1265

    Article  PubMed  PubMed Central  Google Scholar 

  • Cairns J Jr, Lanza GR, Parker BC (1972) Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proc Acad Nat Sci USA 124:79–127

    Google Scholar 

  • Carrick HJ, Fahnenstiel GL, Taylor WD (1992) Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vitro comparisons and importance to food web dynamics. Limnol Oceanogr 37:1221–1235

    Article  Google Scholar 

  • Colburn EA (1988) Factors influencing species diversity in saline waters of Death Valley, USA. Hydrobiologia 158:215–226

    Article  CAS  Google Scholar 

  • Conover RJ Jr (1982) Interrelations between microplankton and other plankton organisms. Ann Inst Oceanogr 59(S):31–46

    Google Scholar 

  • Curds CR (1982) British and other freshwater ciliated protozoa. Part I. Ciliophora: Kinetofragminophora. Keys and notes for the identification of the free-living genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Eppley RW, Carlucci AF, Holm HO, Kiefer D, McCarthy JJ, Venrick EL, Williams PM (1971) Phytoplankton growth and composition in shipboard cultures supplied with nitrate, ammonia or urea as the nitrogen source. Limnol Oceanogr 16:741–751

    Article  CAS  Google Scholar 

  • Esteban GF, Finlay BJ (2003) Cryptic freshwater ciliates in a hypersaline lagoon. Protist 154:411–418

    Article  PubMed  Google Scholar 

  • Esteban GF, Fenchel T, Finlay BJ (2010) Mixotrophy in ciliates. Protist 161:621–641

    Article  CAS  PubMed  Google Scholar 

  • Esteban GF, Finlay BJ, Clarke KJ (2012) Priest Pot in the English Lake district: a showcase of microbial diversity. Freshw Biol 57:321–330

    Article  Google Scholar 

  • Fenchel T (1969) The ecology of the marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1–182

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1991) The biology of free-living anaerobic ciliates. Eur J Protistol 26:201–215

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T, Kristensen LD, Rasmussen L (1990) Water column anoxia: vertical zonation of planktonic protozoa. Mar Ecol Prog Ser 62:1–10

    Article  Google Scholar 

  • Fessenden L, Cowles TJ (1994) Copepod predation on phagotrophic ciliates in Oregon coastal waters. Mar Ecol Prog Ser 107:103–111

    Article  Google Scholar 

  • Finlay BJ (1977) The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia 30:75–81

    Article  Google Scholar 

  • Finlay BJ (1981) Oxygen availability and seasonal migration of ciliated protozoa in a productive lake. J Gen Microbiol 123:173–178

    Google Scholar 

  • Finlay BJ, Esteban GF (1998) Planktonic ciliate species diversity as an integral component of ecosystem function in a freshwater pond. Protist 149:155–165

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ, Esteban GF (2009) Oxygen sensing drives predictable migrations in a microbial community. Environ Microbiol 11:81–85

    Article  PubMed  Google Scholar 

  • Finlay BJ, Span ASW, Harman JMP (1983) Nitrate respiration in primitive eukaryotes. Nature 303:333–336

    Article  CAS  Google Scholar 

  • Finlay BJ, Curds CR, Bamforth SS, Bafort JM (1987) Ciliated protozoa and other microorganisms from two African soda lakes (Lake Nakuru and Lake Simbi, Kenya). Arch Protistenk 133:81–91

    Article  Google Scholar 

  • Finlay BJ, Clarke KJ, Cowling AJ, Hindle RM, Rogerson A, Berninger U-G (1988) On the abundance and distribution of protozoa and their food in a productive freshwater pond. Eur J Protistol 23:205–217

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ, Esteban GF, Fenchel T (1996) Global diversity and body size. Nature 383:132–133

    Article  CAS  Google Scholar 

  • Foissner W, Berger H (1996) A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw Biol 35:375–482

    Google Scholar 

  • Fortin D, Roy M, Rioux J, Thibault P (2000) Occurrence of sulfate-reducing bacteria under a wide range of physico-chemical conditions in Au and Cu-Zn mine tailings. Microbiol Ecol 33:197–208

    CAS  Google Scholar 

  • Furnas MJ (1982) An evaluation of two diffusion culture techniques for estimating phytoplankton growth rates in situ. Mar Biol 70:63–72

    Article  Google Scholar 

  • Galotti A, Finlay BJ, Jiménez-Gómez F, Guerrero F, Esteban G (2014) Most ciliated protozoa in extreme environments are cryptic in the ‘seed-bank’. Aquat Microb Ecol 72:187–193

    Article  Google Scholar 

  • Gasol JM, Peters F, Guerrero R, Pedrós-Alió R (1992) Community structure in Lake Ciso: Biomass allocation to trophic groups and differing patterns of seasonal succession in the meta- and epilimnion. Arch Hydrobiol 123:275–303

    Google Scholar 

  • Gates MA (1984) Quantitative importance of ciliates in the planktonic biomass of lake ecosystems. Hydrobiologia 108:233–238

    Article  Google Scholar 

  • Giebelhausen B, Lampert W (2001) Temperature reaction norms of Daphnia magna: the effect of food concentration. Freshw Biol 46:281–289

    Article  Google Scholar 

  • Giese AC (ed) (1973) Blepharisma. The biology of a light-sensitive protozoa. Stanford University Press, Stanford, CA

    Google Scholar 

  • Gifford DJ (1991) The protozoa-metazoan trophic link in pelagic ecosystems. J Protozool 38:81–86

    Article  Google Scholar 

  • Gilron GL, Lynn DH (1989) Estimates of in situ population growth rates of four tintinnine ciliate species near Kingston Harbour, Jamaica. Estuar Coast Shelf Sci 29:1–10

    Article  Google Scholar 

  • Goulder R (1971) The effects of saprobic conditions on some ciliated protozoa in the benthos and hypolimnion of a eutrophic pond. Freshw Biol 1:307–318

    Article  Google Scholar 

  • Goulder R (1974) The seasonal and spatial distribution of some benthic ciliated protozoa in Esthwaite water. Freshw Biol 4:127–147

    Article  Google Scholar 

  • Goulder R (1980) The ecology of two species of primitive ciliated protozoa commonly found in standing freshwaters (Loxodes magnus Stokes and L. striatus Penard). Hydrobiologia 72:131–158

    Article  Google Scholar 

  • Green J (1994) The temperate-tropical gradient of planktonic Protozoa and Rotifera. Hydrobiologia 272:13–26

    Article  Google Scholar 

  • Guhl BE, Finlay BJ (1993) Anaerobic predatory ciliates track seasonal migrations of planktonic photosynthetic bacteria. FEMS Microbiol Lett 107:313–316

    Article  Google Scholar 

  • Guhl BE, Finlay BJ, Schink B (1996) Comparison of ciliate communities in the anoxic hypolimnia of three lakes: general features and the influence of lake characteristics. J Plankton Res 18:335–353

    Article  CAS  Google Scholar 

  • Guildford SJ, Taylor WD (2011) Evidence supporting the importance of nutrient regeneration by micro- and nanograzers for phytoplankton photosynthesis in Lake Malawi/Nyasa. J Great Lakes Res 37:54–60

    Article  CAS  Google Scholar 

  • Gustavson K, Garde K, Wängberg S, Selmer J (2000) Influence of UV-B radiation on bacterial activity in coastal waters. J Plankton Res 22:1501–1511

    Article  CAS  Google Scholar 

  • Hall CJ, Burns CW (2001) Effects of salinity and temperature on survival and reproduction of Boeckella hamata (Copepoda: Calanoida) from a periodically brackish lake. J Plankton Res 23:97–104

    Article  Google Scholar 

  • Hampton JR, Schwartz RL (1976) Contractile vacuole function in Pseudocohnilembus persalinus: responses to variations in ion and total solute concentration. Comp Biochem Physiol 55:1–4

    Article  CAS  Google Scholar 

  • Hansen AM (2000) Response of ciliates and Cryptomonas to the spring cohort of a cyclopoid copepod in a shallow hypereutrophic lake. J Plankton Res 22:185–203

    Article  Google Scholar 

  • Hart RC, Hart R (1977) The seasonal cycles of phytoplankton in Lake Sibaya: a preliminary investigation. Arch Hydrobiol 80:85–107

    Google Scholar 

  • Havens KE, Beaver JR (1997) Consumer vs. resource control of ciliate protozoa in a copepod-dominated subtropical lake. Arch Hydrobiol 140:491–511

    Article  Google Scholar 

  • Hecky RE, Fee EJ (1981) Primary production and rates of algal growth in Lake Tanganyika. Limnol Oceanogr 26:532–547

    Article  Google Scholar 

  • Hecky RE, Kling HJ (1981) The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content and spatio-temporal distribution. Limnol Oceanogr 26:548–564

    Article  Google Scholar 

  • Hennemuth W, Rhoads LS, Eichelberger H, Watanabe M, VanBell KM, Ke L, Kim H, Nguyen G, Jonas JD, Veith D, Van Bell CT (2008) Ingestion and inactivation of bacteriophages by Tetrahymena. J Eukaryot Microbiol 55:44–50

    Article  PubMed  Google Scholar 

  • Hewett SW (1988) Predation by Didinium nasutum: effects of predator and prey size. Ecology 69:135–145

    Article  Google Scholar 

  • Holz GG Jr, Conner RL (1987) The composition, metabolism, and roles of lipids in Tetrahymena. In: Elliot AM (ed) The biology of Tetrahymena. Dowden, Hutchinson and Ross Inc, Stroudburg, PA, pp 99–122

    Google Scholar 

  • Hwang S, Heath RT (1997) The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the food web. J Plankton Res 19:491–518

    Article  Google Scholar 

  • Hyenstrand P, Rydin E, Gunnerhed M (2000) Response of pelagic cyanobacteria to iron additions-enclosure experiments from Lake Erken. J Plankton Res 22:1113–1126

    Article  CAS  Google Scholar 

  • Iriberri J, Ayo B, Santamaria E, Barcina I, Egea L (1995) Influence of bacterial density and water temperature on the grazing activity of two freshwater ciliates. Freshw Biol 33:223–231

    Article  Google Scholar 

  • Jack J, Gilbert JJ (1993) Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. Freshw Biol 29:19–29

    Article  Google Scholar 

  • Jack J, Gilbert JJ (1997) Effects of metazoan predators on ciliates in freshwater plankton communities. J Eukaryot Microbiol 44:194–199

    Article  Google Scholar 

  • Jenkin PN (1936) Reports on the Percy Sladen Expedition to some Rift Valley Lakes in Kenya in 1929.- VII. Summary of the ecological results, with special reference to the alkaline lakes. Annu Mag Nat Hist Ser 10 18:161–181

    Google Scholar 

  • Jones BE, Grant WD (1999) Microbial diversity and ecology of the Soda Lakes of East Africa. In: Proceedings of the 8th international symposium on microbial ecology. http://Plato.acadiau.ca/isme/Symposium22/jones. Accessed Dez 2014

  • Kebede E, Belay A (1994) Species composition and phytoplankton biomass in a tropical African lake (Lake Awassa, Ethiopia). Hydrobiologia 288:13–32

    Article  CAS  Google Scholar 

  • Kilham P (1981) Pelagic bacteria: extreme abundances in African saline lakes. Naturwiss 67:380–381

    Article  Google Scholar 

  • Krashevska V, Sandmann D, Maraun M, Scheu S (2014) Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. Int J Syst Evol Microbiol 8:1126–1134

    CAS  Google Scholar 

  • Lair N, Leveille J-C, Reyes-Marchant P, Taleb H (1994) The feeding of a larval fish, Lebistes reticulatus, on ciliates and rotifers. Mar Microb Food Webs 8:337–346

    Google Scholar 

  • Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvre L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLOSOne 8, e72577

    Article  CAS  Google Scholar 

  • Laybourn-Parry J (1992) Protozoan plankton ecology. Chapman and Hall, London

    Google Scholar 

  • Laybourn-Parry J, Olver J, Rees S (1990) The hypolimnetic protozoan plankton of a eutrophic lake. Hydrobiologia 203:111–119

    Article  Google Scholar 

  • Lewis WM Jr (1985) Protozoan abundances in the plankton of two tropical lakes. Arch Hydrobiol 104:337–343

    Google Scholar 

  • Lynn DH, Roff JC, Hopcroft RR (1991) Annual abundance of aloricate ciliates in tropical neritic waters off Kingston, Jamaica. Mar Biol 110:437–448

    Article  Google Scholar 

  • MacIntyre S, Melack JM (1982) Meromixis in an equatorial African soda lake. Limnol Oceanogr 27:595–609

    Article  CAS  Google Scholar 

  • Madoni P (1990) The ciliated protozoa of the monomictic Lake Kinneret (Israel): species composition and distribution during stratification. Hydrobiologia 190:111–120

    Article  Google Scholar 

  • Mageed AA, Mohammadein A, Desouky M (2002) Importance of protozoa as food to zooplankton and some fish species in Lake Qaroun, Egypt. J Egypt Aquat Biol Fish 6:59–74

    Google Scholar 

  • Martens K, Tudorancea C (1991) Seasonality and spatial distribution of the ostracods of Lake Zwai, Ethiopia (Crustacea: Ostracoda). Freshw Biol 25:233–241

    Article  Google Scholar 

  • Massana R, Pedrós-Alió C (1994) Role of anaerobic ciliates in planktonic food webs: abundance, feeding, and impact on bacteria in the field. Appl Environ Microbiol 60:1325–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathes J, Arndt H (1994) Biomass and composition of protozooplankton in relation to lake trophy in north German lakes. Mar Microb Food Webs 8:357–375

    Google Scholar 

  • Mavuti KM (1990) Ecology and role of zooplankton in the fishery of Lake Naivasha. Hydrobiologia 208:131–140

    Article  Google Scholar 

  • Melack JM (1979) Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol Oceanogr 24:753–760

    Article  Google Scholar 

  • Melack JM (1981) Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81:71–85

    Article  Google Scholar 

  • Mengestou S, Fernando CH (1991) Seasonality and abundance of the dominant crustacean zooplankton in a tropical Rift Valley lake, Awassa, Ethiopia. Hydrobiologia 226:137–152

    Article  Google Scholar 

  • Milbrink G (1977) On the limnology of two alkaline lakes (Nakuru and Naivasha) in the East Rift Valley system in Kenya. Int Rev Ges Hydrobiol 62:1–17

    Article  CAS  Google Scholar 

  • Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strombidium and Strobilidium. Mar Ecol Prog Ser 130:241–254

    Article  Google Scholar 

  • Montagnes DJS, Lynn DH (1993) A quantitative protargol stain (QPS) for ciliates and other protists. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 229–240

    Google Scholar 

  • Montagnes DJS, Lynn DH, Roff JC, Taylor WD (1988) The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar Biol 99:21–30

    Article  Google Scholar 

  • Müller H, Geller W (1993) Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch Hydrobiol 126:315–327

    Google Scholar 

  • Müller H, Schone A, Pinto-Coelho RM, Schweizer A, Weisse T (1991) Seasonal succession of ciliates in Lake Constance. Microbiol Ecol 21:119–138

    Article  Google Scholar 

  • Nogrady T (1983) Succession of planktonic rotifer population in some lakes of the Eastern Rift Valley, Kenya. Hydrobiologia 98:45–54

    Article  Google Scholar 

  • Ochumba PBO, Kibaara DI (1988) An instance of thermal instability in Lake Simbi, Kenya. Hydrobiologia 158:247–252

    Article  CAS  Google Scholar 

  • Ong’ondo GO, Yasindi AW, Oduor SO, Jost S, Schagerl M, Sonntag P, Boenigk J (2013) Ecology and community structure of ciliated protists in two alkaline-saline Rift Valley lakes in Kenya with special emphasis on Frontonia. J Plankton Res 35:759–771

    Article  Google Scholar 

  • Pace ML (1986) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31:45–55

    Article  Google Scholar 

  • Pace ML, Orcutt JD (1981) The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol Oceanogr 25:822–830

    Article  Google Scholar 

  • Pace ML, McManus GB, Findlay SEG (1990) Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808

    Article  Google Scholar 

  • Paffenhöfer GA (1998) Heterotrophic protozoa and small metazoa: feeding rates and prey-consumer interactions. J Plankton Res 20:121–133

    Article  Google Scholar 

  • Parker BC, Simmons GM, Seaburg KG (1982) Comparative ecology of plankton communities in seven Antarctic oasis lakes. J Plankton Res 4:271–286

    Article  Google Scholar 

  • Priscu JC, Vincent WF, Howard-Williams C (1989) Inorganic nitrogen uptake and regeneration in perennially ice-covered Lake Fryxell and Vanda, Antarctica. J Plankton Res 11:335–351

    Article  CAS  Google Scholar 

  • Reynolds CS (1989) Physical determinants of phytoplankton succession. In: Sommer U (ed) Plankton ecology, succession in plankton communities. Springer, London, pp 9–56

    Chapter  Google Scholar 

  • Robarts RD (1988) Heterotrophic bacterial activity and primary production in a hypertrophic African lake. Hydrobiologia 148:97–107

    Article  Google Scholar 

  • Roberts E, Laybourn-Parry J, Mcnight DM, Novarino G (2000) Stratification and dynamics of microbial loop communities in lake Fryxell, Antarctica. Freshw Biol 44:649–661

    Article  Google Scholar 

  • Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Protozool 38:76–81

    Article  Google Scholar 

  • Saros JE, Fritz SC (2000) Changes in the growth rates of saline-lake diatoms in response to variation in salinity, brine type and nitrogen form. J Plankton Res 22:1071–1083

    Article  Google Scholar 

  • Sherr EB, Sherr BF, Fallon RD, Newell SY (1986) Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol Oceanogr 31:177–183

    Article  Google Scholar 

  • Shukla U, Gupta PK (2001) Assemblage of ciliated protozoan community in a polluted and non-polluted environment in a tropical lake of central Himalaya: Lake Naini Tal, India. J Plankton Res 23:571–584

    Article  CAS  Google Scholar 

  • Sommaruga R, Sattler B, Oberleiter A (1999) An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. II. Effects on the microbial food web. J Plankton Res 21:859–876

    Article  Google Scholar 

  • Sommer U (ed) (1989) Plankton ecology: succession in plankton communities. Springer, London

    Google Scholar 

  • Sonntag B, Summerer M, Sommaruga R (2011) Factors involved in the distribution pattern of ciliates in the water column of a transparent alpine lake. J Plankton Res 33:535–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprules WG, Bowerman JE (1988) Omnivory and food chain length in zooplankton food webs. Ecology 69:418–426

    Article  Google Scholar 

  • Stensdotter-Blomberg U (1998) Factors controlling pelagic populations of ciliates and heliozoans- late summer investigations in an acidic lake before and after liming. J Plankton Res 20:423–442

    Article  Google Scholar 

  • Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908

    Article  Google Scholar 

  • Stoecker DK, Evans GT (1985) Effects of protozoan herbivory and carnivory in a microplankton food web. Mar Ecol Prog Ser 25:159–167

    Article  Google Scholar 

  • Strom S, Morello T (1998) Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J Plankton Res 20:571–584

    Article  Google Scholar 

  • Talling JF (1986) The seasonality of phytoplankton in African lakes. Hydrobiologia 138:139–160

    Article  Google Scholar 

  • Talling JF, Lamoalle J (1998) Ecological dynamics of tropical inland waters. Cambridge University Press, Cambridge

    Google Scholar 

  • Talling JF, Wood RB, Prosser MV, Baxter RM (1973) The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshw Biol 3:53–76

    Article  Google Scholar 

  • Taylor WD (1978) Growth responses of ciliate protozoa to the abundance of their bacterial prey. Microb Ecol 4:207–214

    Article  Google Scholar 

  • Taylor WD, Heynen ML (1987) Seasonal and vertical distribution of ciliophora in Lake Ontario. Can J Fish Aquat Sci 44:2185–2191

    Article  Google Scholar 

  • Taylor WD, Johannsson EO (1991) A comparison of estimates of productivity and consumption by zooplankton for planktonic ciliates in Lake Ontario. J Plankton Res 13:363–372

    Article  Google Scholar 

  • Taylor WD, Sanders RW (2010) Chapter 3. Protozoa. In: Thorp JH, Covich AP (eds) The ecology and classification of North American freshwater invertebrates, 3rd edn. Academic, London, pp 43–96

    Google Scholar 

  • Taylor WD, Shuter BJ (1981) Body size, genome size, and intrinsic rate of increase in ciliated protozoa. Am Nat 118:160–172

    Article  Google Scholar 

  • Twombly S (1983) Seasonal and short term fluctuations in zooplankton abundance in tropical Lake Malawi. Limnol Oceanogr 28:1214–1224

    Article  Google Scholar 

  • Vareschi E (1982) The ecology of Lake Nakuru (Kenya) III. Abiotic factors and primary production. Oecologia 55:81–101

    Article  Google Scholar 

  • Vareschi E, Jacobs J (1985) The ecology of Lake Nakuru (Kenya). VI. Synopsis of production and energy flow. Oecologia 65:412–424

    Article  Google Scholar 

  • Vareschi E, Melack JM, Kilham P (1981) Saline waters. In: Symoens JJ, Burgis MJ, Gaudet JJ (eds) The ecology and utilization of African inland waters, UNEP Reports and Proceedings Series No. 1, Nairobi, pp 93–102

    Google Scholar 

  • Verity PG (1986) Growth rates of natural tintinnid populations in Narragansett Bay. Mar Ecol Prog Ser 29:117–126

    Article  Google Scholar 

  • Weisse T, Müller H (1998) Planktonic protozoa and the microbial food web in Lake Constance. Arch Hydrobiol Spec Issues Adv Limnol 53:223–254

    Google Scholar 

  • Weisse T, Karstens N, Meyer VCL (2001) Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat Microb Ecol 26:167–179

    Article  Google Scholar 

  • Wetzel RG (1983) Limnology, 2nd edn. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Wiackowski K, Staronska A (1999) The effect of predator and prey density on the induced defence of a ciliate. Funct Ecol 13:59–65

    Article  Google Scholar 

  • Wickham SA, Gilbert JJ (1993) The comparative importance of competition and predation by Daphnia on ciliated protists. Arch Hydrobiol 126:289–313

    Google Scholar 

  • Williams WD (1981) Inland salt lakes: an introduction. Hydrobiologia 81:1–14

    Article  Google Scholar 

  • Williams WD, Boulton AJ, Taaffe RG (1990) Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197:257–266

    Article  CAS  Google Scholar 

  • Witek M (1998) Annual changes of abundance and biomass of planktonic ciliates in the Gdalsk basin, southern Baltic. Int Rev Hydrobiol 83:163–182

    Article  Google Scholar 

  • Wood RB, Talling JF (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158:29–67

    Article  CAS  Google Scholar 

  • Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ (2015) Rethinking the marine carbon cycle: factoring in the lifestyles of microbes. Science 347:735

    Article  CAS  Google Scholar 

  • Xu R, Cronberg G (2010) Planktonic ciliates in Western Basin of Lake Ringsjön, Sweden: community structure, seasonal dynamics and long-term changes. Protistology 6:173–187

    Google Scholar 

  • Yasindi AW (2001) The ecology of planktonic ciliates in tropical lakes of East Africa. Dissertation, University of Waterloo, Ontario

    Google Scholar 

  • Yasindi AW, Taylor WD (2005) The abundance, biomass and composition of pelagic ciliates in East African lakes of different salinity and trophy. In: Proceedings of the 11th World Lake conference, vol II, Nairobi, Kenya, pp 374–378

    Google Scholar 

  • Yasindi AW, Taylor WD (2006) The trophic position of planktonic ciliate populations in the food webs of some East African lakes. Afr J Aquat Sci 31:53–62

    Article  Google Scholar 

  • Yasindi AW, Lynn DH, Taylor WD (2002) Ciliated protozoa in Lake Nakuru, a shallow alkaline-saline lake in Kenya: seasonal variation, estimated production, and role in the food web. Arch Hydrobiol 154:311–325

    Article  CAS  Google Scholar 

  • Yasindi AW, Taylor WD, Lynn DH (2007) The community composition and biomass of pelagic ciliated protozoa in East African lakes. Afr J Aquat Sci 32:175–183

    Article  Google Scholar 

  • Zinabu G-M, Taylor WD (1989) Seasonality and spatial variation in abundance, biomass and activity of heterotrophic bacterioplankton in relation to some biotic and abiotic variables in an Ethiopian rift-valley lake (Awassa). Freshw Biol 22:355–368

    Article  Google Scholar 

  • Zinabu G-M, Taylor WD (1997) Bacteria-chlorophyll relationships in Ethiopian lakes of varying salinity: are soda lakes different? J Plankton Res 19:647–654

    Article  Google Scholar 

  • Zingel P (1999) Pelagic ciliated protozoa in a shallow eutrophic lake: community structure and seasonal dynamics. Arch Hydrobiol 146:495–511

    Article  Google Scholar 

  • Zöllner E, Santer B, Boersma M, Hoppe H-G, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshw Biol 48:2174–2193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Yasindi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yasindi, A.W., Taylor, W.D. (2016). The Protozoa of Soda Lakes in East Africa. In: Schagerl, M. (eds) Soda Lakes of East Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-28622-8_7

Download citation

Publish with us

Policies and ethics