Skip to main content

Wireless Applications of Conformal Bioelectronics

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Conformal bioelectronics in flexible or stretchable format that make direct contact to the skin or tissues have contributed extensively to diverse clinical applications. Wireless modules in such minimally invasive forms have developed in parallel to extend the capabilities and to improve the quality of such bioelectronics, in assurances to offer safer and more convenient clinical practice. Such remote capabilities are facilitating significant advances in clinical medicine, by removing bulky energy storage devices and tangled electrical wires, and by offering cost-effective and continuous monitoring of the patients. This chapter provides a snapshot of current developments and challenges of wireless conformal bioelectronics with various examples of applications utilizing either wireless powering or communication system. The chapter begins with near-field wirelessly powered therapeutic devices owing to the simplicity of power transfer mechanism followed by far-field powering systems which require integration of numerous electrical components. In the later sections of the chapter, sensors in conformal format that transfer clinical data wirelessly are discussed and ends by reviewing the developments of wireless bioelectronics that utilize integrated circuits for advanced capabilities in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. LineBaugh, Medical devices in hospitals to go wireless (2012), http://www.wsj.com/articles/SB10001424052702304065704577422633456558976. Accessed 18 Aug 2012

  2. W. Greatbatch, C.F. Holmes, History of implantable devices. IEEE Eng. Med. Biol. Mag. 10, 38–41 (1991)

    Article  Google Scholar 

  3. J.T. Farrar, V.K. Zworykin, J. Baum, Pressure-sensitive telemetering capsule for study of gastrointestinal motility. Science 126, 975–976 (1957)

    Google Scholar 

  4. R.S. Mackay, B. Jacobson, Endoradiosonde. Nature 179, 1239–1240, (1957)

    Google Scholar 

  5. J.A. Rogers, M.G. Lagally, R.G. Nuzzo, Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011)

    Article  Google Scholar 

  6. G. Park, H.-J. Chung, K. Kim, S.A. Lim, J. Kim, Y.-S. Kim et al., Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. Adv. Healthc. Mater. 3, 515–525 (2014)

    Google Scholar 

  7. D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Google Scholar 

  8. D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)

    Google Scholar 

  9. G.A. Covic, J.T. Boys, Inductive Power Transfer. Proc. IEEE 101, 1276–1289 (2013)

    Article  Google Scholar 

  10. A.M. Sodagar, P. Amiri, Capacitive coupling for power and data telemetry to implantable biomedical microsystems, in 09. 4th International IEEE/EMBS Conference on Neural Engineering, 2009. NER, pp. 411–414 (2009)

    Google Scholar 

  11. A. E. Umenei, Understanding low frequency non-radiative power transfer, in Wireless Power Consortium contribution by Fulton Innovation LLC, vol. 7575 (2011)

    Google Scholar 

  12. J.I. Agbinya, Wireless power transfer, in Principles of Inductive near Field Communications for Internet of Things, vol. 18 (2011), pp. 281–300

    Google Scholar 

  13. N. Shinohara, Theroy of WPT, in Wireless Power Transfer Via Radiowaves, pp. 21–52 (2014)

    Google Scholar 

  14. A. Karalis, J.D. Joannopoulos, M. Soljacic, Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323, 34–48 (2008)

    Article  Google Scholar 

  15. S.H. Jeong, K. Hjort, Z. Wu, Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Sci. Rep. 5, 8419 (2015)

    Google Scholar 

  16. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang et al., Epidermal electronics. Science 333, 838–843 (2011)

    Google Scholar 

  17. H.L. Liang, H.T. Whelan, J.T. Eells, M.T.T. Wong-Riley, Near-infrared light via light-emitting diode treatment is therapeutic against rotenone—and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153, 963–974 (2008)

    Article  Google Scholar 

  18. J.L.N. Bastos, R.F.Z. Lizarelli, N.A. Parizotto, Comparative study of laser and LED systems of low intensity applied to tendon healing. Laser Phys. 19, 1925–1931, (2009)

    Google Scholar 

  19. B.P. Timko, T. Dvir, D.S. Kohane, Remotely triggerable drug delivery systems. Adv. Mater. 22, 4925–4943 (2010)

    Article  Google Scholar 

  20. S. Waxman, Near-Infrared Spectroscopy for plaque characterization. J. Intervent. Cardiol. 21, 452–458 (2008)

    Article  Google Scholar 

  21. R.-H. Kim, D.-H. Kim, J. Xiao, B.H. Kim, S.-I. Park, B. Panilaitis et al., Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010)

    Google Scholar 

  22. T.-I. Kim, Y.H. Jung, J. Song, D. Kim, Y. Li, H.-S. Kim et al., High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 8, 1643–1649 (2012)

    Article  Google Scholar 

  23. T.-I. Kim, J.G. McCall, Y.H. Jung, X. Huang, E.R. Siuda, Y. Li et al., Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013)

    Google Scholar 

  24. R.-H. Kim, H. Tao, T.-I. Kim, Y. Zhang, S. Kim, B. Panilaitis et al., Materials and designs for wirelessly powered implantable light-emitting systems. Small 8, 2812–2818 (2012)

    Article  Google Scholar 

  25. S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill et al., A physically transient form of silicon electronics. Science 337, 1640–1644 (2012)

    Google Scholar 

  26. L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie et al., Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014)

    Google Scholar 

  27. H. Tao, S.-W. Hwang, B. Marelli, B. An, J.E. Moreau, M. Yang et al., Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. U.S.A. 111, 17385–17389 (2014)

    Google Scholar 

  28. M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi et al., Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12, 4810–4816 (2012)

    Google Scholar 

  29. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)

    Google Scholar 

  30. C. Dagdeviren, B.D. Yang, Y. Su, P.L. Tran, P. Joe, E. Anderson et al., Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. U.S.A. 111, 1927–1932 (2014)

    Google Scholar 

  31. T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, T. Sakurai et al., A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nat. Mater. 6, 413–417 (2007)

    Article  Google Scholar 

  32. M. Takamiya, T. Sekitani, Y. Miyamoto, Y. Noguchi, H. Kawaguchi, T. Someya et al., Design solutions for a multi-object wireless power transmission sheet based on plastic switches, in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, 2007, pp. 362–609

    Google Scholar 

  33. D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song et al., Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Google Scholar 

  34. J. Yoon, S. Jo, I.S. Chun, I. Jung, H.-S. Kim, M. Meitl et al., GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies, Nature 465, 329–333 (2010)

    Google Scholar 

  35. H.-S. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu et al., Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl. Acad. Sci. U.S.A. 108, 10072–10077 (2011)

    Google Scholar 

  36. L. Sun, G. Qin, H. Huang, H. Zhou, N. Behdad, W. Zhou et al., Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate. Appl. Phys. Lett. 96, 013509 (2010)

    Google Scholar 

  37. J.-H. Ahn, H.-S. Kim, K.J. Lee, Z. Zhu, E. Menard, R.G. Nuzzo et al., High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Lett. 27, 460–462 (2006)

    Google Scholar 

  38. L. Sun, G. Qin, J.-H. Seo, G.K. Celler, W. Zhou, Z. Ma, 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010)

    Google Scholar 

  39. H. Zhou, J.-H. Seo, D.M. Paskiewicz, Y. Zhu, G.K. Celler, P.M. Voyles et al., Fast flexible electronics with strained silicon nanomembranes. Sci. Rep. 3, 1291 (2013)

    Google Scholar 

  40. K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko et al., Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs, in Electron Devices Meeting, 2003. IEDM ‘03 Technical Digest. IEEE International, 2003, pp. 3.1.1–3.1.4

    Google Scholar 

  41. U.K. Mishra, L. Shen, T.E. Kazior, Y.-F. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96, 287–305 (2008)

    Google Scholar 

  42. T.-H. Chang, K. Xiong, S.H. Park, H. Mi, H. Zhang, S. Mikael et al., High power fast flexible electronics: transparent RF AlGaN/GaN HEMTs on plastic substrates, in Microwave Symposium (IMS), 2015 IEEE MTT-S International, 2015, pp. 1–4

    Google Scholar 

  43. S.P. Voinigescu, M.C. Maliepaard, J.L. Showell, G.E. Babcock, D. Marchesan, M. Schroter et al., A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J. Solid-State Circ. 32, 1430–1439 (1997)

    Article  Google Scholar 

  44. Y.H. Jung, T.-H. Chang, H. Zhang, C. Yao, Q. Zheng, V.W. Yang et al., High-performance green flexible electronics based on biodegradable cellulose nanofibril paper, Nat. Commun. 6, 7170 (2015)

    Google Scholar 

  45. G. Qin, H.-C. Yuan, G.K. Celler, W. Zhou, Z. Ma, Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates, J. Phys. D-Appl. Phys. 42, 234006 (2009)

    Google Scholar 

  46. G. Qin, H.-C. Yuan, Y. Qin, J.-H. Seo, Y. Wang, J. Ma et al., Fabrication and characterization of flexible microwave single-crystal germanium nanomembrane diodes on a plastic substrate. IEEE Electron Device Lett. 34, 160–162 (2013)

    Google Scholar 

  47. H.-C. Yuan, G.. Qin, G.K. Celler, Z. Ma, Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates. Appl. Phys. Lett. 95, 043109 (2009)

    Google Scholar 

  48. G. Qin, L. Yang, J.-H. Seo, H.-C. Yuan, G.K. Celler, J. Ma et al., Experimental characterization and modeling of the bending strain effect on flexible microwave diodes and switches on plastic substrate. Appl. Phys. Lett. 99, 243104 (2011)

    Google Scholar 

  49. CGH60008D, 8 W, 6.0 GHz, GaN HEMT Die, CREE, Ed., ed

    Google Scholar 

  50. D.R. Webb, I.G. Sipes, D.E. Carter, In vitro solubility and in vivo toxicity of gallium arsenide. Toxicol. Appl. Pharmacol. 76, 96–104 (1984)

    Article  Google Scholar 

  51. S.J. Cho, Y.H. Jung, Z. Ma, X-Band compatible flexible microwave inductors and capacitors on plastic substrate. IEEE J. Electron Devices Soc. 3, 435–439 (2015)

    Article  Google Scholar 

  52. S. Cheng, A. Rydberg, K. Hjort, Z. Wu, Liquid metal stretchable unbalanced loop antenna. Appl. Phys. Lett. 94, 144103 (2009)

    Google Scholar 

  53. S. Cheng, Z.G. Wu, P. Hallbjorner, K. Hjort, A. Rydberg, Foldable and stretchable liquid metal planar inverted cone antenna. IEEE Trans. Antennas Propag. 57, 3765–3771 (2009)

    Article  Google Scholar 

  54. J.-H. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi, M.D. Dickey, Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19, 3632–3637 (2009)

    Google Scholar 

  55. M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham et al., Stretchable microfluidic radiofrequency antennas, Adv. Mater., 22, pp. 2749–2752, (2010)

    Google Scholar 

  56. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho et al., Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012)

    Article  Google Scholar 

  57. L. Song, A.C. Myers, J.J. Adams, Y. Zhu, Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6, 4248–4253 (2014)

    Google Scholar 

  58. G.J. Hayes, J.-H. So, A. Qusba, M.D. Dickey, G. Lazzi, Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans. Antennas Propag. 60, 2151–2156 (2012)

    Google Scholar 

  59. Y. Qiu, Y.H. Jung, S. Lee, T.-Y. Shih, J. Lee, Y. Xu et al., Compact parylene-c-coated flexible antenna for WLAN and upper-band UWB applications. Electron. Lett. 50, pp. 1782–1784 (2014)

    Google Scholar 

  60. J.A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung et al., Fractal design concepts for stretchable electronics, Nat. Commun. 5, 3266 (2014)

    Google Scholar 

  61. H. Bizri, F. Toameh, W. Hassan, A. Hage-Diab, L. Mustapha, Simulation of RF biological tissues response towards remote sensing ECG device, in 2nd International Conference on Advances in Biomedical Engineering (ICABME) (2013), pp. 9–13

    Google Scholar 

  62. R.E. Fields, Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields (1997)

    Google Scholar 

  63. R.S. Alrawashdeh, Y. Huang, M. Kod, A.A. Sajak, A broadband flexible implantable loop antenna with complementary split ring resonators, IEEE Antennas Wirel. Propag. Lett. 14,1506–1509 (2015)

    Google Scholar 

  64. M.L. Scarpello, D. Kurup, H. Rogier, D. Vande Ginste, F. Axisa, J. Vanfleteren et al., Design of an implantable slot dipole conformal flexible antenna for biomedical applications. IEEE Trans. Antennas Propag. 59, 3556–3564 (2011)

    Google Scholar 

  65. D.D. Karnaushenko, D. Karnaushenko, D. Makarov, O.G. Schmidt, Compact helical antenna for smart implant applications. NPG Asia Mater. 7, e188 (2015)

    Google Scholar 

  66. R. Alrawashdeh, Y. Huang, P. Cao, Flexible meandered loop antenna for implants in MedRadio and ISM bands. Electron. Lett. 49, 1515–1516 (2013)

    Article  Google Scholar 

  67. Z. Duan, Y.-X. Guo, M. Je, D.-L. Kwong, Design and in vitro test of a differentially fed dual-band implantable antenna operating at MICS and ISM Bands. IEEE Trans. Antennas Propag. 62, 2430–2439 (2014)

    Google Scholar 

  68. H.R. Raad, A.I. Abbosh, H.M. Al-Rizzo, D.G. Rucker, Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans. Antennas Propag. 61, 524–531 (2013)

    Article  Google Scholar 

  69. S.-W. Hwang, X. Huang, J.-H. Seo, J.-K. Song, S. Kim, S. Hage-Ali et al., Materials for bioresorbable radio frequency electronics. Adv. Mater. 25, 3526–3531 (2013)

    Google Scholar 

  70. N. Sani, M. Robertsson, P. Cooper, X. Wang, M. Svensson, P.A. Ersman et al., All-printed diode operating at 1.6 GHz. Proc. Natl. Acad. Sci. USA. 111, 11943–11948 (2014)

    Article  Google Scholar 

  71. J. Zhang, Y. Li, B. Zhang, H. Wang, Q. Xin, A. Song, Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz. Nat. Commun. 6, 7561 (2015)

    Google Scholar 

  72. F.H.C. Crick, Thinking about the brain. Sci. Am. 241, 219–232 (1979)

    Google Scholar 

  73. S.I. Park, G. Shin, A. Banks, J.G. McCall, E.R. Siuda, M.J. Schmidt et al., Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. J. Neural Eng. 12, 056002 (2015)

    Google Scholar 

  74. K.L. Montgomery, A.J. Yeh, J.S. Ho, V. Tsao, S. Mohan Iyer, L. Grosenick et al., Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nature Methods, 12, 969–974 (2015)

    Google Scholar 

  75. E.L. Tan, W.N. Ng, R. Shao, B.D. Pereles, K.G. Ong, A wireless, passive sensor for quantifying packaged food quality. Sensors 7, 1747 (2007)

    Google Scholar 

  76. X. Huang, Y. Liu, H. Cheng, W-.J. Shin, J.A. Fan, Z. Liu et al., Materials and designs for wireless epidermal sensors of hydration and strain. Adv. Funct. Mater. 24, 3846–3854 (2014)

    Google Scholar 

  77. X. Huang, Y. Liu, K. Chen, W.-J. Shin, C.-J. Lu, G.-W. Kong et al., Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10, 3083–3090 (2014)

    Google Scholar 

  78. M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)

    Google Scholar 

  79. C. Peng, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 130 mg 300 µW 10b implantable blood-pressure-sensing microsystem for real-time genetically engineered mice monitoring, in Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009, pp. 428–429,429a

    Google Scholar 

  80. C. Po-Jui, S. Saati, R. Varma, M.S. Humayun, T. Yu-Chong, Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. J. Microelectromech. Sys. 19, 721–734 (2010)

    Article  Google Scholar 

  81. L.Y. Chen, B.C.-K. Tee, A.L. Chortos, G. Schwartz, V. Tse, D.J. Lipomi et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014)

    Google Scholar 

  82. H. Fuketa, K. Yoshioka, T. Yokota, W. Yukita, M. Koizumi, M. Sekino et al., 30.3 Organic-transistor-based 2 kV ESD-tolerant flexible wet sensor sheet for biomedical applications with wireless power and data transmission using 13.56 MHz magnetic resonance, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 2014, pp. 490–491

    Google Scholar 

  83. W. Honda, S. Harada, T. Arie, S. Akita, K. Takei, Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 24, 3299–3304 (2014)

    Article  Google Scholar 

  84. J. Kim, A. Banks, H. Cheng, Z.. Xie, S. Xu, K.-I. Jang et al., Epidermal electronics with advanced capabilities in near-field communication. Small 11, 906–912 (2015)

    Google Scholar 

  85. J. Kim, A. Banks, Z. Xie, S.Y. Heo, P. Gutruf, J.W. Lee et al., Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv. Funct. Mater. 25, 4761–4767 (2015)

    Article  Google Scholar 

  86. K. Myny, B. Cobb, J.L. van der Steen, A.K. Tripathi, J. Genoe, G. Gelinck et al., 16.3 Flexible thin-film NFC tags powered by commercial USB reader device at 13.56 MHz, in Solid- State Circuits Conference—(ISSCC), 2015 IEEE International, 2015, pp. 1–3

    Google Scholar 

  87. M. Murugesan, J.C. Bea, T. Fukushima, T. Konno, K. Kiyoyama, W. C. Jeong et al., Cu lateral interconnects formed between 100-µm-thick self-assembled chips on flexible substrates, in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 1496–1501

    Google Scholar 

  88. T.-Y. Chao, Y.T. Cheng, Wafer-level chip scale flexible wireless microsystem fabrication, in IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), 2011, pp. 344–347

    Google Scholar 

  89. H. Rempp, J. Burghartz, C. Harendt, N. Pricopi, M. Pritschow, C. Reuter et al., Ultra-thin chips on foil for flexible electronics, in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, 2008, pp. 334–617

    Google Scholar 

  90. P. Mostafalu, W. Lenk, M. Dokmeci, B. Ziaie, A. Khademhosseini, S. Sonkusale, Wireless flexible smart bandage for continuous monitoring of wound oxygenation, in Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE, 2014, pp. 456–459

    Google Scholar 

  91. J.G. McCall, T.-I. Kim, G. Shin, X. Huang, Y.H. Jung, R. Al-Hasani et al., Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 8, 2413–2428, (2013)

    Google Scholar 

  92. S. Xu, Y. Zhang, L. Jia, K.E. Mathewson, K.-I. Jang, J. Kim et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)

    Google Scholar 

  93. B. Otis, B. Parviz, Introducing our smart contact lens project, in Google Official Blog vol. 2015, ed. by Google (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqiang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jung, Y.H., Zhang, H., Ma, Z. (2016). Wireless Applications of Conformal Bioelectronics. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics