Skip to main content

Mechanical Specializations of Insect Ears

  • Chapter
  • First Online:
Insect Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 55))

Abstract

In this chapter some of the mechanical specializations that insects have evolved to carry out acoustic sensory tasks are reviewed. Although it is easy to perceive insect hearing organs as simplistic compared to other animals, the mechanisms involved can be complex. This chapter therefore acts as an introduction to the complexities of some insect hearing systems as viewed from a mechanical perspective. The chapter provides some of the background knowledge readers require to investigate the subject in greater depth while acknowledging that this subject is an active, developing, and broad area of research. Following a brief background section on the physics of sound as applied to the insect ear, the mechanical function of several insect hearing organs is discussed in relation to the different acoustic parameters that different insect species need to evaluate, such as frequency, origin, and amplitude. A further section then follows to discuss the mechanical basis of active hearing, whereby energy is added to the hearing system to condition its acoustic response, again using available examples. Finally, the chapter concludes with a discussion on the current state-of-the-art in this active research area and makes some suggestions as to where the future may lead insect hearing mechanism researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennet-Clark, H. C. (1998). Size and scale effects as constraints in insect sound communication. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353, 407–419.

    Article  PubMed Central  Google Scholar 

  • Bies, D. A., & Hansen, C. H. (2009). Engineering noise control: Theory and practice. New York: Taylor & Francis.

    Google Scholar 

  • Boo, K. S., & Richards, A. G. (1975). Fine structure of the scolopidia in the Johnston's organ of male Aedes aegypti (L.) (Diptera: Culicidae). International Journal of Insect Morphology and Embryology, 4, 549–566.

    Article  Google Scholar 

  • Camalet, S., Duke, T., Jülicher, F., & Prost, J. (2000). Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proceedings of the National Academy of Sciences of the USA, 97, 3183–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements, A. N. (1999). The biology of mosquitoes: Sensory reception and behavior. Oxford, UK Chapman & Hall.

    Google Scholar 

  • Coro, F., & Kössl, M. (1998). Distortion-product otoacoustic emissions from the tympanic organ in two noctuoid moths. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 183, 525–531.

    Article  Google Scholar 

  • Eguíluz, V. M., Ospeck, M., Choe, Y., Hudspeth, A. J., & Magnasco, M. O. (2000). Essential nonlinearities in hearing. Physics Review Letters, 84, 5232–5235.

    Article  Google Scholar 

  • Field, L. H., Hill, K. G., & Ball, E. E. (1980). Physiological and biophysical properties of the auditory system of the New Zealand weta Hemideina crassidens (Blanchard, 1851) (Ensifera, Stenopelmatidae). Journal of Comparative Physiology, 141, 31–37.

    Google Scholar 

  • Fletcher, N. H. (1992). Acoustic systems in biology. New York: Oxford University Press.

    Google Scholar 

  • Fonseca, P. J., Munch, D., & Hennig, R. M. (2000). Auditory perception: How cicadas interpret acoustic signals. Nature, 405, 297–298.

    Article  CAS  PubMed  Google Scholar 

  • Göpfert, M. C., & Robert, D. (2001). Active auditory mechanics in mosquitoes. Proceedings of the Royal Society of London B: Biological Sciences, 268, 333–339.

    Article  Google Scholar 

  • Göpfert, M. C., & Robert, D. (2003). Motion generation by Drosophila mechanosensory neurons. Proceedings of the National Academy of Sciences of the USA, 100, 5514–5519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Göpfert, M. C., Humphris, A. D. L., Albert, J. T., Robert, D., & Hendrich, O. (2005). Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proceedings of the National Academy of Sciences of the USA, 102, 325–330.

    Article  PubMed  Google Scholar 

  • Gordon, S. D., & Windmill, J. F. C. (2015). Hearing ability decreases in ageing locusts. Journal of Experimental Biology, 218, 1990–1994.

    Article  PubMed  Google Scholar 

  • Gordon, S. D., Jackson, J. C., Rogers, S. M., & Windmill, J. F. C. (2014). Listening to the environment: Hearing differences from an epigenetic effect in solitarious and gregarious locusts. Proceedings of the Royal Society B: Biological Sciences, 281, 20141693.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, J. C., & Robert, D. (2006). Nonlinear auditory mechanism enhances female sounds for male mosquitoes. Proceedings of the National Academy of Sciences of the USA, 103, 16734–16739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory system. Journal of the Acoustical Society of America, 64, 1386–1391.

    Article  CAS  PubMed  Google Scholar 

  • Kössl, M., & Boyan, G. S. (1998). Acoustic distortion products from the ear of a grasshopper. Journal of the Acoustical Society of America, 104, 326–335.

    Article  Google Scholar 

  • Lomas, K. F., Greenwood, D. R., Windmill, J. F. C., Jackson, J. C., Corfield, J., & Parsons, S. (2012). Discovery of a lipid synthesising organ in the auditory system of an insect. PLoS ONE, 7, e51486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkin, R., McDonagh, T. R., Mhatre, N., Scott, T. S., & Robert, D. (2014). Energy localization and frequency analysis in the locust ear. Journal of the Royal Society Interface, 11, 20130857.

    Article  PubMed Central  Google Scholar 

  • Manley, G. A., Fay, R. R., & Popper, A. N. (Eds.). (2008). Active processes and otoacoustic emissions in hearing. New York: Springer Science+Business Media.

    Google Scholar 

  • Mhatre, N., & Robert, D. (2013). A tympanal insect ear exploits a critical oscillator for active amplification and tuning. Current Biology, 23, 1952–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelsen, A. (1971). Physiology of locust ear: 1–3. Zeitschrift für vergleichende Physiologie, 71, 49–128.

    Article  Google Scholar 

  • Miles, R. N., Robert, D., & Hoy, R. R. (1995). Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea. Journal of the Acoustical Society of America, 98, 3059–3070.

    Article  CAS  PubMed  Google Scholar 

  • Miller, L. A. (1970). Structure of green lacewing tympanal organ (Chrysopa carnea, Neuroptera). Journal of Morphology, 131, 359–382.

    Article  Google Scholar 

  • Moir, H. M., Jackson, J. C., & Windmill, J. F. C. (2013). Extremely high frequency sensitivity in a ‘simple’ ear. Biology Letters, 9, 20130241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montealegre-Z, F., & Robert, D. (2015). Biomechanics of hearing in katydids. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201, 5–18.

    Article  PubMed  Google Scholar 

  • Montealegre-Z, F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338, 968–971.

    Article  CAS  PubMed  Google Scholar 

  • Mora, E. C., Cobo-Cuan, A., Macías-Escrivá, F., & Kössl, M. (2015). Unexpected dynamic up-tuning of auditory organs in day-flying moths. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201, 657–666.

    Article  PubMed  Google Scholar 

  • Nadrowski, B., Effertz, T., Senthilan, P. R., & Göpfert, M. C. (2011). Antennal hearing in insects: New findings, new questions. Hearing Research, 273, 7–13.

    Article  PubMed  Google Scholar 

  • Palghat Udayashankar, A., Kössl, M., & Nowotny, M. (2012). Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets. PLoS ONE, 7, e31008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikovsky, A., & Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Reddy, J. N. (2005). An introduction to the finite element method (3rd ed.). New York: McGraw-Hill Education.

    Google Scholar 

  • Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roeder, K. D., & Treat, A. E. (1957). Ultrasonic reception by the tympanic organ of noctuid moths. Journal of Experimental Zoology, 134, 127–157.

    Article  CAS  PubMed  Google Scholar 

  • Stephen, R. O., & Bennet-Clark, C. (1982). The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. Journal of Experimental Biology, 99, 279–314.

    Google Scholar 

  • Sueur, J., Janique, S., Simonis, C., Windmill, J. F. C., & Baylac, M. (2010). Cicada ear geometry: Species and sex effects. Biological Journal of the Linnean Society, 101, 922–934.

    Article  Google Scholar 

  • Surlykke, A., Filskov, M., Fullard, J. H., & Forrest, E. (1999). Auditory relationships to size in noctuid moths: Bigger is better. Naturwissenschaften, 86, 238–241.

    Article  CAS  Google Scholar 

  • Todi, S. V., Sivan-Loukianova, E., Jacobs, J. S., Kiehart, D. P., & Eberl, D. F. (2008). Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development. PLoS ONE, 3, e2115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Treat, A. E., & Roeder, K. D. (1959). A nervous element of unknown function in the tympanic organs of moths. Journal of Insect Physiology, 3, 262–270.

    Article  Google Scholar 

  • van Dijk, P., Wit, H., & Segenhout, J. (1989). Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): Spectral details and temperature dependence. Hearing Research, 42, 273–282.

    Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing. New York: McGraw-Hill.

    Google Scholar 

  • Windmill, J. F. C., Gopfert, M. C., & Robert, D. (2005). Tympanal traveling waves in migratory locusts. Journal of Experimental Biology, 208, 157–168.

    Article  PubMed  Google Scholar 

  • Windmill, J. F. C., Jackson, J. C., Tuck, E. J., & Robert, D. (2006). Keeping up with bats: Dynamic auditory tuning in a moth. Current Biology, 16, 2418–2423.

    Article  CAS  PubMed  Google Scholar 

  • Windmill, J. F. C., Sueur, J., & Robert, D. (2009). The next step in cicada audition: Measuring pico-mechanics in the cicada’s ear. Journal of Experimental Biology, 212, 4079–4083.

    Article  CAS  PubMed  Google Scholar 

  • Yack, J. E. (2004). The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technique, 63, 315–337.

    Article  PubMed  Google Scholar 

  • Yager, D. D., & Hoy, R. R. (1986). The cyclopean ear: A new sense for the praying-mantis. Science, 231, 727–729.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. C. Windmill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Windmill, J.F.C., Jackson, J.C. (2016). Mechanical Specializations of Insect Ears. In: Pollack, G., Mason, A., Popper, A., Fay, R. (eds) Insect Hearing. Springer Handbook of Auditory Research, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-28890-1_6

Download citation

Publish with us

Policies and ethics