Skip to main content

Osmotic Adjustment and Plant Adaptation to Drought Stress

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Drought stress is among widespread environmental problems limiting plant survival, growth, and productivity. However, plants adopt a number of strategies such as osmotic adjustment, which could help maintain water uptake, cell turgor, and functions of stomata by accumulating large quantities of osmolytes. The aims of this chapter are to integrate relevant data on the mechanisms of osmotic adjustment by osmolytes in plants and to illustrate the variety of mechanisms related to the genetic variation of osmotic adjustment. The different functions of the two types of osmolytes, organic solutes and inorganic ions, which play a key role in osmotic adjustment, are explained. The genetic variation of osmotic adjustment in a number of crop species has opened the way for the potential use of osmotic adjustment–related genes and molecular markers in breeding using marker-assisted selection to improve crop drought tolerance. Therefore, the chapter also focuses on commonly used protocols for quantifying osmotic adjustment as well as on approaches related to current strategies and future research directions in the improvement of plant stress resistance in crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass SM, Mohamed HI. Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J Bot. 2011;40(1):75–83.

    Article  Google Scholar 

  • Abbasian A, Mirshekari B, Vishekaei S, Naghi M, Rashidi V, Aminpanah H. Efecto de la aplicación foliar con metanol y presencia de distintas densidades de pasto dentado (Echinochloa crusgalli) sobre el desarrollo y rendimiento de arroz (Oryza sativa L.). Idesia Arica. 2015;33(2):69–75.

    Article  Google Scholar 

  • Abdelgawad ZA, Hathout TA, El-Khallal SM, Said EM, Al-Mokadem AZ. Accumulation of trehalose mediates salt adaptation in rice seedlings. Amer-Eur J Agr Environ Sci. 2014;14(12):1450–63.

    Google Scholar 

  • Abdelraheem A, Hughs SE, Jones DC, Zhang J. Genetic analysis and quantitative trait locus mapping of PEG‐induced osmotic stress tolerance in cotton. Plant Breeding. 2015;134(1):111–20.

    Article  CAS  Google Scholar 

  • Acosta-García G, Chapa-Oliver AM, Millán-Almaraz JR, Guevara-González RG, Cortez-Baheza E, Rangel-Cano RM, Torres-Pacheco I, et al. CaLEA 73 gene from Capsicum annuum L. enhances drought and osmotic tolerance modulating transpiration rate in transgenic Arabidopsis thaliana. Can J Plant Sci. 2015;95(2):227–35.

    Article  CAS  Google Scholar 

  • Aghdasi M, Schluepmann H, Smeekens S. Characterization of Arabidopsis seedlings growth and development under trehalose feeding. J Cell Mol Res. 2011;2(1):1–9.

    Google Scholar 

  • Ahmed M, Qadeer U, Ahmed ZI, Hassan FU. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch Acker Pfl Boden. 2015

    Google Scholar 

  • Ahn C, Park U, Park PB. Increased salt and drought tolerance by dononitol production in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun. 2011;415:669–74.

    Article  CAS  PubMed  Google Scholar 

  • Akbari MM, Mobasser HR, Ganjali HR. Influence of salt stress and variety on some characteristics of corn. Biol Forum. 2015;7(1):441.

    CAS  Google Scholar 

  • Al Hassan M, Fuertes MM, Sánchez FJR, Vicente O, Boscaiu M. Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2015;43(1).

    Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patrón M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett. 2006;28:1867–76.

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;231:1237–49.

    Article  PubMed  CAS  Google Scholar 

  • Aldesuquy HS, Abo-Hamed SA, Abbas MA, Elhakem AH. Role of glycine betaine and salicylic acid in improving growth vigour and physiological aspects of droughted wheat cultivars. J Stress Physiol Biochem. 2012;8(1):149–71.

    Google Scholar 

  • Aleksza D, Kovács H, Szabados L, Horváth GV. Regulation of protective proline synthesis in Arabidopsis thaliana. Adv Plant Breeding Biotechnol Tech. 2014.

    Google Scholar 

  • Ali Rezaei M, Kaviani B, Masouleh AK. The effect of exogenous glycine betaine on yield of soybean Glycine max (L.) Merr. In two contrasting cultivars pershing and DPX under soil salinity stress. Plant Omics. 2012;5(2):87–93.

    CAS  Google Scholar 

  • Ali Q, Ashraf M. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci. 2011;197(4):258–71.

    Article  CAS  Google Scholar 

  • Ali AAA, Ali AMM, Mohammed NK. ABA biosynthesis defective mutants reduce some free amino acids accumulation under drought stress in tomato leaves in comparison with Arabidopsis plants tissues. J Stress Physiol Biochem. 2012a;8(2):179–92.

    Google Scholar 

  • Ali Q, Ashraf M, Anwar F, Al-Qurainy F. Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc. 2012b;89(8):1485–93.

    CAS  Google Scholar 

  • Ali MH, Siddiqui MH, Al-Wahibi MH, Basalah MO, Sakran AM, El-Zaidy M. Effect of proline and abscisic acid on growth and physiological performance of faba bean under water stress. Pak J Bot. 2013a;45(3):933–40.

    CAS  Google Scholar 

  • Ali Q, Anwar F, Ashraf M, Saari N, Perveen R. Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. Int J Mol Sci. 2013b;14(1):818–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Arshad M, Naqvi SS, Rasheed A, Sher H, Kazi AG, Mujeeb-Kazi A. Comparative assessment of synthetic-derived and conventional bread wheat advanced lines under osmotic stress and implications for molecular analysis. Plant Mol Biol Rep. 2015;22:1–11.

    CAS  Google Scholar 

  • Alia HH, Chen THH, Murata N. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ. 1998;21:232–9.

    Article  CAS  Google Scholar 

  • Allard F, Houde M, Krol M, Ivanov A, Huner NPA, Sarhan F. Betaine improves freezing tolerance in wheat. Plant Cell Physiol. 1998;39:1194–202.

    Article  CAS  Google Scholar 

  • Al-Quraan NA, Sartawe FAB, Qaryouti MM. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. J Plant Physiol. 2013;170(11):1003–9.

    Article  CAS  PubMed  Google Scholar 

  • Anbarasi G, Bhagavathi G, Vignesh R, Srinivasan M, Somasundaram ST. Effect of exogenous abscisic acid on growth and biochemical changes in the halophyte Suaeda maritima. J Microbiol Biotechnol Food Sci. 2015;4(5):442.

    Article  CAS  Google Scholar 

  • Andrade A, Vigliocco A, Alemano S, Llanes A, Abdala G. Comparative morpho-biochemical responses of sunflower lines sensitive and tolerant to water stress. Am J Plant Sci. 2013;4:12–32.

    Article  Google Scholar 

  • Anjum SA, Farooq M, Wang LC, Xue LL, Wang SG, Wang L, Chen M, et al. Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycine betaine under drought conditions. Plant Soil Environ. 2011a;57(7):326–31.

    CAS  Google Scholar 

  • Anjum SA, Xie X, Wang LC, Saleem MF, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res. 2011b;6:2026–32.

    Google Scholar 

  • Arefian M, Vessal S, Bagheri A. Biochemical changes in response to salinity in chickpea (Cicer arietinum L.) during early stages of seedling growth. J Animal Plant Sci. 2014;24(6):2014.

    Google Scholar 

  • Ashraf M, Akram NA. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv. 2009;27:744–52.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59:206–16.

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004;166:3–16.

    Article  CAS  Google Scholar 

  • Ashrafijou M, Sadat Noori SA, Izadi Darbandi A, Saghafi S. Effect of salinity and radiation on proline accumulation in seeds of canola (Brassica napus L.). Plant Soil Environ. 2010;56(7):312–7.

    CAS  Google Scholar 

  • Asthir B, Gulati A, Bains NS. Controlling water deficit by osmolytes and enzymes: enhancement of carbohydrate mobilization to overcome osmotic stress in wheat subjected to water deficit conditions. Afr J Biotechnol. 2014;13(20):2072.

    Article  CAS  Google Scholar 

  • Bagheri AA, Saadatmand S, Niknam V, Nejadsatari T, Babaeizad V. Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. Int J Adv Biol BioMed Res. 2013;1(11):1337–50.

    CAS  Google Scholar 

  • Bagheri AA, Saadatmand S, Niknam V, Nejadsatari T, Babaeizad V. Effects of Piriformospora indica on biochemical parameters of Oryza sativa under salt stress. Int J Biosci. 2014;4(4):24–32.

    CAS  Google Scholar 

  • Balaguer L, Punaire FI, Martínez-Ferri E, Armas C, Valladares F, Manrique E. Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant Soil. 2002;240:343–52.

    Article  CAS  Google Scholar 

  • Barlow EWR, Munns R, Scott NS, Reisner AH. Water potential, growth and polyribosome content of stressed wheat apex. J Exp Bot. 1977;28:909–16.

    Article  Google Scholar 

  • Barros PDS, Soares-Cavalcanti NM, Vieira-Mello GS, Wanderley-Nogueira AC, Calsa-Junior T, Benko-Iseppon AM. In silico evaluation of osmoprotectants in eucalyptus transcriptome. Lect Notes Comput Sci. 2009;5488:66–77.

    Article  Google Scholar 

  • Bárzana G, Aroca R, Ruiz‐Lozano J. Localized and non‐localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environ. 2015;38(8):108–25.

    Article  CAS  Google Scholar 

  • Basnayake J, Ludlow MM, Cooper M, Henzell RG. Genotypic variation of osmotic adjustment and desiccation tolerance in contrasting sorghum inbred lines. Field Crop Res. 1993;35:51–62.

    Article  Google Scholar 

  • Basu S, and Roychoudhury A. Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance. BioMed Res Int. 2014.

    Google Scholar 

  • Belhassen E, This D, Monneveux P. L’adaptation génétique face aux contraintes de sécheresse. Cah Agr. 1995;4:251–61.

    Google Scholar 

  • Bhattacharyya D, Yu SM, Lee YH. Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regul. 2014;75(1):297–306.

    Article  CAS  Google Scholar 

  • Bîrsan A, Rotaru V, Jigău G, Nagacevschi T, Tofan E, Sîtari C. Influence of biological active substances on the proline content of soybean sorts with various resistances to drought. Soil Form Fact Proc Temp Zone. 2015;13(1):51–8.

    Google Scholar 

  • Blum A. Plant breeding for stress environments. Boca Raton: CRC; 1988. p. 43–61.

    Google Scholar 

  • Blum A. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci. 1989;29:230–3.

    Article  Google Scholar 

  • Blum A. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul. 1996;20:135–48.

    Article  CAS  Google Scholar 

  • Blum A, Mayer J, Gozlan G. Associations between plant production and some physiological components of drought resistance in wheat. Plant Cell Environ. 1983;6:219–25.

    Google Scholar 

  • Blum A, Zhang J, Nguyen HT. Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Res. 1999;64:287–91.

    Article  Google Scholar 

  • Bohnert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 1996;14:89–97.

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses. Plant Cell. 1995;7:1099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgo L, Marur CJ, Vieira LGE. Effects of high proline accumulation on chloroplast and mitochondrial ultrastructure and on osmotic adjustment in tobacco plants. Acta Sci Agron. 2015;37(2):191–9.

    Article  Google Scholar 

  • Boukraâ D, Benabdelli K, Belabid L, Bennabi F. Effect of salinity on chickpea seed germination pre-treated with salicylic acid. Sci J Biol Sci. 2013;2(4):86–93.

    Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant. 2012;5(2):418–29.

    Article  CAS  PubMed  Google Scholar 

  • Braatne JH, Hinckley TM, Stettler RF. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Pops deltoides and their F1 hybrids. Tree Physiol. 1992;11:325–39.

    Article  PubMed  Google Scholar 

  • Bradshaw HD. Molecular genetics of Populus. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM, editors. Biology of Populus and its implications for management and conservation. Ottawa: NRC Research Press, National Research Council of Canada; 1996. p. 183–99.

    Google Scholar 

  • Bressan RA, Hasegawa PM, Handa AK. Resistance of cultured higher plant cells to polyethylene glycol-induced water stress. Plant Sci Lett. 1981;21:23–30.

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M. PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Molecular stress physiology of plants. Springer. 2013. pp 87-131.

    Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Kalaji HM, Shao HB, Hakeem KR. Heat signaling and stress responses in photosynthesis. In: Brestic M, editor. Plant signaling: understanding the molecular cross-talk. New Delhi: Springer; 2014. p. 241–56.

    Chapter  Google Scholar 

  • Buermann W, Lintner BR, Koven CD, Angert A, Pinzon JE, Tucker CJ, et al. The changing carbon cycle at Mauna Loa Observatory. Proc Natl Acad Sci U S A. 2007;104:4249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celik O, Atak Ç. Evaluation of proline accumulation and Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene expression during salinity stress in two soybean (Glycine max L. Merr.) varieties. Polish J Environ Stud. 2012;21:559–64.

    CAS  Google Scholar 

  • Chaitali R, Sengupta DN. Effect of short term NaCl stress on cultivars of S. lycopersicum: a comparative biochemical approach. J Stress Physiol Biochem. 2014;10(1):112.

    Google Scholar 

  • Chan Z, Grumet R, Loescher W. Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J Exp Bot. 2011;62(14):4787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra Babu R, Pathan MS, Blum A, Nguyen HT. Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Sci. 1999;39:150–8.

    Article  Google Scholar 

  • Charkazi F, Ramezanpour SS, Soltanloo H. Expression pattern of two sugar transporter genes (SuT4 and SuT5) under salt stress in wheat. Plant Omics J. 2010;3:194–8.

    CAS  Google Scholar 

  • Cha-Um S, Samphumphuang T, Kirdmanee C. Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Aust J Crop Sci. 2013;7(2):213–8.

    CAS  Google Scholar 

  • Chaves MM, Oliveira MM. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot. 2004;55:2365–84.

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osorio ML, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot. 2002;89:907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen THH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol. 2002;5:250–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot. 2009;60:2005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Song F, Liu F, Tian C, Liu S, Xu H, Zhu X. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. Sci World J. 2014. 10.1155/2014/956141.

    Google Scholar 

  • Chen YS, Lo SF, Sun PK, Lu CA, Ho THD, Yu SM. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J. 2015;13(1):105–16.

    Article  CAS  PubMed  Google Scholar 

  • Chéour F, Kaddachi I, Achouri D, Bannour S, Zorgui L. Effects of water stress on relative water, chlorophylls and proline contents in barley (Hordeum vulgare L.) leaves. J Agr Vet Sci. 2014;7(6):13–6.

    Google Scholar 

  • Chutipaijit S, Cha-Um S, Sompornpailin K. An evaluation of water deficit tolerance screening in pigmented indica rice genotypes. Pak J Bot. 2012;44(1):65–72.

    CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 2005;437:529–33.

    Article  CAS  PubMed  Google Scholar 

  • Clauw P. Study of biomass production during drought in Arabidopsis thaliana (Doctoral dissertation, Faculty of Sciences Department of Plant Biotechnology and Genetics VIB Department of Plant Systems Biology, UGent). 2010.

    Google Scholar 

  • Colmer TD, Epstein E, Dvorak J. Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host) A. love amphiploid. Plant Physiol. 1995;108:1715–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conde A, Silva P, Agasee A, Conde C, Gerós H. Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea japonica under salt and osmotic stress. Plant Cell Physiol. 2011;52:1766–75.

    Article  CAS  PubMed  Google Scholar 

  • Condon AG. Water relations and osmotic adjustment in wheat as influenced by water stress history and plant development. MSc Thesis. Sydney: Sydney University; 1982.

    Google Scholar 

  • D’Souza Myrene R, Devaraj VR. Mercury-induced changes in growth and oxidative metabolism of field bean (Dolichos lablab). Res J Chem Environ. 2013;17(9):86–93.

    Google Scholar 

  • Dai JR, Liu B, Feng DR, Liu HY, He YM, Qi KB, Wang JF, et al. MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis. Plant Cell Rep. 2011;30(7):1219–30.

    Article  CAS  PubMed  Google Scholar 

  • Das KC, Misra HP. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem. 2004;262:127–33.

    Article  CAS  PubMed  Google Scholar 

  • Dawood MG, El-Awadi ME. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol Colombiana. 2015;20(2):223–35.

    Google Scholar 

  • De Britto JA, Roshan Sebastian S, Sheeba Gracelin DH. Effect of lead on malondialdehyde, superoxide dismutase, proline activity and chlorophyll content in Capsicum annum. Biores Bull. 2013;5(4):20–3.

    Google Scholar 

  • De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, Van Staden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol. 2004;161:1211–24.

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS. Proline biosynthesis and osmoregulation in plants. Plant J. 1993;4:215–23.

    Article  CAS  Google Scholar 

  • Deyanira QM, Estrada-Luna AA, Altamirano-Hernández J, Peña-Cabriales JJ, de Oca-Luna RM, Cabrera-Ponce JL. Use of trehalose metabolism as a biochemical marker in rice breeding. Mol Breeding. 2012;30(1):469–77.

    Article  CAS  Google Scholar 

  • Di H, Tian Y, Zu H, Meng X, Zeng X, Wang Z. Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica. 2015;34:1–9.

    Google Scholar 

  • Ding ZJ, Yan JY, Xu XY, Yu DQ, Li GX, Zhang SQ, Zheng SJ. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J. 2014;79(1):13–27.

    Article  CAS  PubMed  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Vankova R, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol. 2010;167(16):1360–70.

    Article  CAS  PubMed  Google Scholar 

  • Dolferus R. To grow or not to grow: a stressful decision for plants. Plant Sci. 2014;229:247–61.

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Bowra S, Vincze E. The development and evaluation of single cell suspension from wheat and barley as a model system; a first step towards functional genomics application. BMC Plant Biol. 2010;10(1):239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C. Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot. 2007;58:3025–36.

    Article  CAS  PubMed  Google Scholar 

  • Eichholz I, Förster N, Ulrichs C, Schreiner M, Huyskens-Keil S. Survey of bioactive metabolites in selected cultivars and varieties of Lactuca sativa L. under water stress. J Appl Bot Food Qual. 2014;87:265–73.

    Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK. Membrane-trafficking RabA4c involved in the effect of glycinebetaine on recovery from chilling stress in Arabidopsis. Physiol Plant. 2007;130:511–8.

    Article  CAS  Google Scholar 

  • El Habbasha SF, Mekki BB. Amelioration of the growth, yield and chemical constituents of canola plants grown under salinity stress condition by exogenous application of proline. Int J. 2014;2(11):501–8.

    Google Scholar 

  • Engelbrecht BM, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP. Drought sensitivity shapes species distribution patterns in tropical forests. Nature. 2007;447:80–2.

    Article  CAS  PubMed  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz‐Lozano J. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013;36(10):1771–82.

    Article  CAS  PubMed  Google Scholar 

  • Evans PT, Malmberg RL. Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol. 1989;40:235–69.

    Article  CAS  Google Scholar 

  • Evers D, Lefèvre I, Legay S, Lamoureux D, Hausman JF, Rosales ROG, Schafleitner R. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J Exp Bot. 2010;61(9):2327–43.

    Article  CAS  PubMed  Google Scholar 

  • Farhad MS, Babak AM, Reza ZM, Hassan RSM, Afshin T. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Aust J Crop Sci. 2011;5(1):55–60.

    CAS  Google Scholar 

  • Fariduddin Q, Ahmed M, Mir BA, Yusuf M, Khan TA. 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environ Sci Pollut Res Int. 2015;22:1–11.

    Article  CAS  Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep. 2012;39(5):6387–97.

    Article  CAS  PubMed  Google Scholar 

  • Fereres E, Acevedo E, Henderson DW, Hsiao TC. Seasonal changes in water potential and turgor maintenance in sorghum and maize under water stress. Physiol Plant. 1978;44:261–7.

    Article  Google Scholar 

  • Fernandez-Aunión C, Hamouda TB, Iglesias-Guerra F, Argandoña M, Reina-Bueno M, Nieto JJ, Vargas C, et al. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol. 2010;10(1):192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot. 2014;97:1–10.

    Article  CAS  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, et al. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 2012;193–194:70–84.

    Article  PubMed  CAS  Google Scholar 

  • Flower DJ, Usha Rani A, Peacock JM. Influence of osmotic adjustment on the growth, stomata1 conductance and light interception of contrasting sorghum lines in a harsh environment. Aust J Plant Physiol. 1990;17:91–105.

    Article  Google Scholar 

  • Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Phytol. 2008;179:945–63.

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11:861–905.

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad SA, Gaikwad DK, Chavan PD. Influence of water stress on free proline content in three different Linum usitatissimum varieties. World J Pharm Pharmaceut Sci. 2014;3(5):1528–33.

    CAS  Google Scholar 

  • Galvani A. The challenge of the food sufficiency through salt tolerant crops. Rev Environ Sci Biotechnol. 2007;6:3–16.

    Article  CAS  Google Scholar 

  • Gao J, Wang N, Xu SS, Li Y, Wang Y, Wang GX. Exogenous application of trehalose induced H2O2 production and stomatal closure in Vicia faba. Biol Plantarum. 2013;57(2):380–4.

    Article  CAS  Google Scholar 

  • Gebre GM, Kuhns MR. Seasonal and clonal variations in drought tolerance of Populus deltoides. Canad J For Res. 1991;21:910–6.

    Article  Google Scholar 

  • Gebre G, Tschaplinski T. Role of osmotic adjustment in plant productivity: a summary report and review of current literature. Oak Ridge: Oak Ridge National Laboratory; 2000.

    Google Scholar 

  • Gerats AGM, Kaye C, Collins C, Malmberg ML. Polyamine levels in Petunia genotypes with normal and abnormal floral morphologies. Plant Physiol. 1988;86:390–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghahremani M, Ghanati F, Bernard F, Azad T, Gholami M, Safari M. Ornithine-induced increase of proline and polyamines contents in tobacco cells under salinity conditions. Aust J Crop Sci. 2014;8:91–6.

    Google Scholar 

  • Ghimire KH, Quiatchon LA, Vikram P, Swamy BM, Dixit S, Ahmed H, Kumar A, et al. Identification and mapping of a QTL (qDTY 1.1) with a consistent effect on grain yield under drought. Field Crop Res. 2012;131:88–96.

    Article  Google Scholar 

  • Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signal Behav. 2010;51:26–33.

    Article  Google Scholar 

  • Glinka Z, Ludlow MM. Comparative osmotic adjustment to water deficit in Texas 671 and E 57. In: MA Foale, RG Henzell, PN Vance (eds.), Proc 2nd Aust Sorghum Conf Aust Inst of Agric Sci, Melbourne. 1986. pp 316–325.

    Google Scholar 

  • Good AG, Stroeher VL, Muench DG. U.S. Patent No. 7,786,343. Washington, DC: U.S. Patent and Trademark Office, 2010.

    Google Scholar 

  • Gosavi GU, Jadhav AS, Kale AA, Gadakh SR, Pawar BD, Chimote VP. Effect of heat stress on proline, chlorophyll content, heat shock proteins and antioxidant enzyme activity in sorghum (Sorghum bicolor) at seedlings stage. Indian J Biotechnol. 2014;13:356–63.

    CAS  Google Scholar 

  • Goudarzi A, Jafari M, Safaie N, Jafari SM. Transgenic sugar beet expressing a bacterial mannitol-1-phosphate dehydrogenase (mtlD) gene shows enhanced resistance to fungal pathogens. Sugar Tech. 2015;1–12.

    Google Scholar 

  • Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids. 2008;34:35–45.

    Article  CAS  PubMed  Google Scholar 

  • Grümberg BC, Urcelay C, Shroeder MA, Vargas-Gil S, Luna CM. The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol Fert Soils. 2015;51(1):1–10.

    Article  CAS  Google Scholar 

  • Grumet R, Hanson AD. Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in barley. Aust J Plant Physiol. 1986;13:353–64.

    Article  CAS  Google Scholar 

  • Grumet R, Albrechtsen RS, Handon AD. Growth and yield of barley isopopulations differing in solute potential. Crop Sci. 1987;27:991–5.

    Article  Google Scholar 

  • Gupta N, Thind SK, Bains NS. Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regul. 2014;72(3):221–8.

    Article  CAS  Google Scholar 

  • Gupta N, Thind S. Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. J Agr Sci Technol. 2015;17(1):75–86.

    Google Scholar 

  • Gurumoorthy P, Singh KG. Quantitative analysis of proteins and antioxidants during stress on Oryza sativa. J Global Biosci. 2014;3(2):552–61.

    Google Scholar 

  • Hanafy MS, Mohamed HA. Effect of irradiation of wheat grains with fast neutrons on the grain yield and other characteristics of the plants. Appl Radiat Isotopes. 2014;86:71–8.

    Article  CAS  Google Scholar 

  • Hanafy MS, El-Banna A, Schumacher HM, Jacobsen HJ, Hassan FS. Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Rep. 2013;32(5):663–74.

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J. 2000;19:4248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997;21:79–102.

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 1998;21:535–53.

    Article  CAS  Google Scholar 

  • He C, Zhang W, Gao Q, Yang A, Hu X, Zhang J. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica. 2011;177(2):151–67.

    Article  CAS  Google Scholar 

  • He C, He Y, Liu Q, Liu T, Liu C, Wang L, Zhang J. Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants. Mol Breeding. 2013;31(3):559–73.

    Article  CAS  Google Scholar 

  • Hirich A, El Omari H, Jacobsen SE, Lamaddalena N, Hamdy A, Ragab R, Choukr-Allah R, et al. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water. Aust J Crop Sci. 2014;8(5):646–54.

    CAS  Google Scholar 

  • Holmberg N, Bülow L. Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 1998;3:61–6.

    Article  Google Scholar 

  • Holmström KO, Mantyala E, Welin B, Mandal A, Palva TE, Tunnela O, Londsborough J. Drought tolerance in tobacco. Nature. 1996;379:683–4.

    Article  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 2000;122:1129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Proline and glycine betaine enhance antioxidant defense and methyl glyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol. 2008;165:813–24.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M. Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methyl-glyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants. 2010;16:19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini SM, Hasanloo T, Mohammadi S. Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola (Brassica napus L.) cultivars under drought stress conditions. Turk J Agr Forest. 2014;39:413–20.

    Article  Google Scholar 

  • Hsiao T, Xu LK. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot. 2000;51:1595–616.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW. Stress metabolism. Water stress, growth, and osmotic adjustment. Phil Trans R Soc Lond B. 1976;273:479–500.

    Article  Google Scholar 

  • Hsiao TC, O’Toole JC, Yambao EB, Turner NC. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L). Plant Physiol. 1984;75:338–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv. 2011;29:300–11.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM. Selenium pretreatment regulates the antioxidant defense system and reduces oxidative stress on drought-stressed wheat (Triticum aestivum L.) plants. Asian J Plant Sci. 2014;13(3):120–8.

    Article  Google Scholar 

  • Iqbal MJ, Rahman MU, Ashraf M, Sheikh MA, Jamil A. Trehalose expression in hexaploid wheat (Triticum aestivum L.) germplasm under drought stress. Pak J Life Socl Sci. 2012;10(2):106–10.

    Google Scholar 

  • İşeri ÖD, Körpe DA, Sahin FI, Haberal M. High salt induced oxidative damage and antioxidant response differs in Nicotiana tabacum L. and Nicotiana rustica L. cultivars. J Appl Biol Sci. 2013;7(1):15–23.

    Google Scholar 

  • Islam S, Malik AI, Islam AKMR, Colmer TD. Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. J Exp Bot. 2007;58:1219–29.

    Article  CAS  PubMed  Google Scholar 

  • Jagendorf AT, Takabe T. Inducers of glycine betaine synthesis in barley. Plant Physiol. 2001;127:1827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M. Emerging role of metabolic pathways in abiotic stress tolerance. J Plant Biochem Physiol. 2013;1:108.

    Article  Google Scholar 

  • Jain M, Tiwary S, Gadre R. Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant Soil Environ. 2010;6:263–7.

    Google Scholar 

  • Jamaux I, Steinmetz A, Belhassen E. Looking for molecular and physiological markers of osmotic adjustment in sunflower. New Phytol. 1997;137:117–27.

    Article  CAS  Google Scholar 

  • Javadian N, Karimzadeh G, Mahfoozi S, Ghanati F. Cold-induced changes of enzymes, proline, carbohydrates, and chlorophyll in wheat. Russ J Plant Physl. 2010;57(4):540–7.

    Article  CAS  Google Scholar 

  • Javadmanesh S, Rahmani F, Pourakbar L. UV-B radiation, soil salinity, drought stress and their concurrent effects on some physiological parameters in maize plant. Am Eurasian J Toxicol Sci. 2012;4(4):154–64.

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant. 2011;33(3):797–802.

    Article  Google Scholar 

  • Jnandabhiram C, Sailen Prasad B. Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of Assam, India. II. Protein and proline status in seedlings under PEG induced water stress. Amer J Plant Sci. 2012;3(7):971–80.

    Article  CAS  Google Scholar 

  • Jones XIM, Turner NC, Osmond CB. Mechanisms of drought resistance. In: Paleg LPG, Aspmall D, editors. The physiology and biochemistry of drought resistance in plants. Brisbane: Academic; 1981. p. 15–37.

    Google Scholar 

  • Joseph EA, Radhakrishnan VV, Mohanan KV. A study on the accumulation of proline—an osmoprotectant amino acid under salt stress in some native rice cultivars of North Kerala, India. Universal J Agr Res. 2015;3(1):15–22.

    Google Scholar 

  • Kadioglu A, Saruhan N, Saglam A, Terzi R, Acet T. Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul. 2011;64:27–37.

    Article  CAS  Google Scholar 

  • Kamal AHM, Cho K, Choi JS, Jin Y, Park CS, Lee JS, Woo SH. Patterns of protein expression in water-stressed wheat chloroplasts. Biol Plantarum. 2013;57(2):305–12.

    Article  CAS  Google Scholar 

  • Kamoshita A, Rodriguez R, Yamauchi A, Wade LJ. Response of rainfed-lowland rice genotypes to prolonged drought and rewatering during the vegetative stage. In: Fukai S, and Basnayake J (eds), Increased lowland rice production in the Mekong region. ACIAR Proceedings No 101, ACIAR, Canberra. 2001. pp 78–85.

    Google Scholar 

  • Kanayama Y, Watanabe M, Moriguchi R, Deguchi M, Kanahama K, Yamaki S. Effects of low temperature and abscisic acid on the expression of the sorbitol-6-phosphate dehydrogenase gene in apple leaves. J Jpn Soc Hortic Sci. 2006;75:20–5.

    Article  CAS  Google Scholar 

  • Kausar N, Nawaz K, Hussain K, Bhatti KH, Siddiqi EH, Tallat A. Effect of exogenous applications of glycine betaine on growth and gaseous exchange attributes of two maize (Zea mays L.) cultivars under saline conditions. World Appl Sci J. 2014;29:1559–65.

    Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Ashraf M, Dikilitas M. Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). J Plant Interact. 2013;8(3):234–41.

    Article  CAS  Google Scholar 

  • Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci. 2000;40:482–7.

    Article  CAS  Google Scholar 

  • Kesari R, Lasky JR, Villamor JG, Des Marais DL, Chen YJC, Liu TW, Verslues PE, et al. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proc Natl Acad Sci U S A. 2012;109(23):9197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid A, Zafar ZU, Akram A, Hussain K, Manzoor H, Al-Qurainy F, Ashraf MA. Photosynthetic capacity of canola (Brassica napus L.) plants as affected by glycinebetaine under the salt stress. J Appl Bot. Food Qual. 2015;88(1).

    Google Scholar 

  • Khan MA, Iqbal M, Jameel M, Nazeer W, Shakir S, Aslam MT, Iqbal B. Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). Afr J Biotechnol. 2013;10(55):11340–4.

    Google Scholar 

  • Khan MS, Ahmad D, Khan MA. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol. 2015a;18:257–66.

    Article  CAS  Google Scholar 

  • Khan SU, Khan A, Naveed S. Effect of exogenously applied kinetin and glycinebetaine on metabolic and yield attributes of rice (Oryza sativa L.) under drought stress. Emirates J Food Agr. 2015b;27(1):75.

    Google Scholar 

  • Khavari-Nejad RA, Najafi F, Ranjbari M. The effects of GA3 application on growth, lipid peroxidation, antioxidant enzymes activities, and sugars levels of cadmium stressed tomato (Lycopersicon esculentum Mill. cv.CH) plants. Rom J Biol Plant Biol. 2013;58(1):51–60.

    Google Scholar 

  • Khazarin HHV. Effects of deficit irrigation on soluble sugars, starch and proline in three corn hybrids. Indian J Sci Res. 2014;7(1):910–7.

    Google Scholar 

  • Khomdram S, Barthakur S, Devi GS. Water stress inducible proline transporter from indica rice. Ann Agr Res. 2013;34(3):189–96.

    Google Scholar 

  • Kido EA, Ferreira Neto JR, Silva RL, Belarmino LC, Bezerra Neto JP, Soares-Cavalcanti NM, et al. Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinf. 2013;14(1).

    Google Scholar 

  • Kikuchi A, Huynh HD, Endo T, Watanabe K. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breeding Sci. 2015;65(1):85.

    Article  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol. 2010;61:561–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, Yokota A, Kramer DM. The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ. 2009;32:209–19.

    Article  CAS  PubMed  Google Scholar 

  • Kojić D, Pajević S, Jovanović-Galović A, Purać J, Pamer E, Škondrić S, Grubor-Lajšić G, et al. Efficacy of natural aluminosilicates in moderating drought effects on the morphological and physiological parameters of maize plants (Zea mays L.). J Soil Sci Plant Nutr. 2012;12(1):113–23.

    Google Scholar 

  • Koyro HW, Ahmad P, Geissler N. Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV, editors. Environmental adaptations and stress tolerance of plants in the era of climate change. New York: Springer; 2012. p. 1–28.

    Chapter  Google Scholar 

  • Kubis J, Floryszak-Wieczorek J, Arasimowicz-Jelonek M. Polyamines induce adaptive responses in water deficit stressed cucumber roots. J Plant Res. 2014;127:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SG, Reddy AM, Sudhakar C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci. 2003;165:1245–51.

    Article  CAS  Google Scholar 

  • Kumar D, Singh P, Yusuf MA, Upadhyaya CP, Roy SD, Hohn T, Sarin NB. The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. Mol Biotechnol. 2013;54(2):292–303.

    Article  CAS  PubMed  Google Scholar 

  • Kumar MN, Hsieh YF, Verslues PE. At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2015;112(33):10545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y. Advances in polyamine research in 2007. J Plant Res. 2007;120:345–50.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N. NaCl and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci. 2007;172:363–70.

    Article  CAS  Google Scholar 

  • Ladyman JAR, Hitz WD, Hanson AD. Translocation and metabolism of glycinebetaine by barley plants in relation to water stress. Planta. 1980;150:191–6.

    Article  CAS  PubMed  Google Scholar 

  • Lahuta LB, Dzik T. D-chiro-Inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum. J Plant Physiol. 2011;168(4):352–8.

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Ku MSB, Edwards GE. Analysis of inhibition of photosynthesis due to water-stress in the C3 species Hordeum vulgare and Vicia faba —electron-transport, CO2 fixation and carboxylation capacity. Photosynth Res. 1996;49:57–69.

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW. Absorption of polyethylene glycols by plants and their effects on plant growth. New Phytol. 1970;69:501–13.

    Article  CAS  Google Scholar 

  • Lawlor DW, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002;25:275–94.

    Article  CAS  PubMed  Google Scholar 

  • Le TN, Mcqueen-Mason SJ. Desiccation-tolerant plants in dry environments. Rev Environ Sci Biotechnol. 2006;5:269–79.

    Article  CAS  Google Scholar 

  • Leigh RA, Ahmad N, Wyn Jones RG. Assessment of glycinebetaine and proline compartmentation by analysis of isolated beet vacuoles. Planta. 1981;153:34–41.

    Article  CAS  PubMed  Google Scholar 

  • Leithy SM, Leila BA, Abdallah EF, Gaballah MS. Response of Canola plants to antitranspirant levels and limited irrigation. Am Eurasian J Sustain Agr. 2015;9(4):83–7.

    Google Scholar 

  • LeRudulier DL, Strom AR, Dandekar AM, Smith LT, Valentine RC. Molecular biology of osmoregulation. Science. 1984;224:1064–8.

    Article  CAS  Google Scholar 

  • Levitt J. Responses of plants to environmental stresses. II Water, radiation, salt and other stresses, 2nd edn. New York: Academic. 1980. pp 25-178.

    Google Scholar 

  • Li F, Lei HJ, Zhao XJ, Tian RR, Li TH. Characterization of three sorbitol transporter genes in micropropagated apple plants grown under drought stress. Plant Mol Biol Rep. 2011;30:123–30.

    Article  CAS  Google Scholar 

  • Li X, Zhang SS, Ma JX, Guo GY, Zhang XY, Liu X, Bi CL. TaUBA, a UBA domain-containing protein in wheat (Triticum aestivum L.), is a negative regulator of salt and drought stress response in transgenic Arabidopsis. Plant Cell Rep. 2015;34(5):755–66.

    Article  CAS  PubMed  Google Scholar 

  • Lilley JM, Ludlow MM. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crop Res. 1996;48:185–97.

    Article  Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR, O’Toole JC. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot. 1996;47:1427–36.

    Article  CAS  Google Scholar 

  • Liu Q, Zhang Y, Shouyi C. Plant protein kinase genes induced by drought, high salt and cold stresses. Chin Sci Bull. 2000;45:1153–7.

    Article  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 2007;24:117–26.

    Article  CAS  Google Scholar 

  • Liu C, Zhao L, Yu G. The dominant glutamic acid metabolic flux to produce gamma-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol. 2011;53:608–18.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol. 2012;78(3):289–300.

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liu Y, Ye N, Zhu G, Chen M, Jia L, Zhang J, et al. AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment. J Exp Bot. 2015;66(5):1339–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG. Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci. 2009;66:2007–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewus FA, Murthy PN. Myo-inositol metabolism in plants. Plant Sci. 2000;150:1–19.

    Article  CAS  Google Scholar 

  • Loukehaich R, Wang T, Ouyang B, Ziaf K, Li H, Zhang J, Ye Z, et al. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot. 2012;63(15):5593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludlow MM, Muchow RC. A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron. 1990;43:107–53.

    Article  Google Scholar 

  • Ludlow MM, Chu ACP, Clements RJ, Kerslake RG. Adaptation of species Centrosema to water stress. Aust J Plant Physiol. 1983;10:119–30.

    Article  Google Scholar 

  • Ludlow MM, Santamaria JM, Fukai S. Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. II Water stress after anthesis. Aust J Agr Res. 1990;41:67–77.

    Article  Google Scholar 

  • Ludmerszki E, Paldi K, Racz I, Szigeti Z, Rudnoy SZ. The promising role of exogenous s-methylmethionine in agriculture, in the case of maize cultivation. Appl Ecol Environ Res. 2014;12(3):777–85.

    Article  Google Scholar 

  • Lui J, Zhu JK. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol. 1997;114:591–6.

    Article  Google Scholar 

  • Ma Q, Turner DW. Osmotic adjustment segregates with and is positively related to seed yield in F3 lines of crosses between Brassica napus and B. juncea subjected to water deficit. Aust J Exp Agric. 2006;46:1621–7.

    Article  Google Scholar 

  • Ma Q, Niknam SR, Turner DW. Responses of osmotic adjustment and seed yield of Brassica napus and B. juncea to soil water deficit at different growth stages. Aust J Agric Res. 2006;57:221–6.

    Article  Google Scholar 

  • Macaluso L, Bianco R, Rieger M. Mannitol-producing tobacco exposed to varying water, light, temperature and paraquat levels. J Hortic Sci Biotech. 2007;82(6):979–85.

    Article  CAS  Google Scholar 

  • Maevskaya SN, Nikolaeva MK. Response of antioxidant and osmoprotective systems of wheat seedlings to drought and rehydration. Russ J Plant Physiol. 2013;60(3):343–50.

    Article  CAS  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA. Does proline accumulation play an active role in stress-induced growth reduction? Plant J. 2002;31:699–712.

    Article  CAS  PubMed  Google Scholar 

  • Maisura CM, Lubis I, Junaedinand A, Ehara H. Some physiological character responses of rice under drought conditions in a paddy system. J Int Soc Southeast Asian Agric Sci. 2014;20(1):104–14.

    Google Scholar 

  • Makhloufi E, Yousfi FE, Pirrello J, Bernadac A, Ghorbel A, Bouzayen M. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp durum). Plant Signal Behav. 2015;10(10):66.

    Article  CAS  Google Scholar 

  • Malekzadeh P. Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol Mol Biol Plant. 2015;21(2):225–32.

    Article  CAS  Google Scholar 

  • Malik S, Ashraf M, Arshad M, Malik TA. Effect of ascorbic acid application on physiology of wheat under drought stress. Pak J Agr Sci. 2015;52(1):209–17.

    Google Scholar 

  • Manivannan P. Triazole induced tolerance to drought in Helianthus annuus L. Sunflower. 2015.

    Google Scholar 

  • Marcińska I, Czyczyło-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, Grzesiak S, et al. Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci. 2013;14(7):13171–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maroco JP, Rodrigues ML, Lopes C, Chaves MM. Limitations to leaf photosynthesis in grapevine under drought: metabolic and modelling approaches. Funct Plant Biol. 2002;29:1–9.

    Article  Google Scholar 

  • Masgrau C, Altabella T, Farrás R, Flores D, Thompson AJ, Besford RT, Tiburcio AF. Inducible over expression of oat arginine decarboxylase in transgenic tobacco plants. Plant J. 1997;11:465–73.

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Tang AC, Boyer JS. Plants can grow on internal water. Plant Cell Environ. 1991;14:925–30.

    Article  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 1999;120:945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta RA, Handa A, Li N, Mattoo AK. Ripening activated expression of S-adenosylmethionine decarboxylase increases polyamine levels and influences ripening in transgenic tomato fruits. Plant Physiol. 1997;114:41–4.

    Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol. 2002;20:613–8.

    Article  CAS  PubMed  Google Scholar 

  • Melkonian JJ, Wolfe J, Steponkus PL. Determination of the volumetric modulus of elasticity of wheat leaves by pressure-volume relations and the effect of drought conditioning. Crop Sci. 1982;22(1):116–23.

    Article  Google Scholar 

  • Melloul M, Iraqi D, El Alaoui M, Erba G, Alaoui S, Ibriz M, Elfahime E. Identification of differentially expressed genes by cDNA-AFLP technique in response to drought stress in Triticum durum. Food Technol Biotech. 2014;52(4):479–88.

    Article  CAS  Google Scholar 

  • Merewitz E, Belanger F, Warnke S, Huang B, Bonos S. Quantitative trait loci associated with drought tolerance in creeping bentgrass. Crop Sci. 2014;54(5):2314–24.

    Article  Google Scholar 

  • Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blazquez MA. Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol. 2008;25:2119–28.

    Article  CAS  PubMed  Google Scholar 

  • Missihoun TD, Schmitz J, Klug R, Kirch HH, Bartels D. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. Planta. 2011;233(2):369–82.

    Article  CAS  PubMed  Google Scholar 

  • Mitoi EN, Holobiuc I, Blindu R. The effect of mannitol on antioxidative enzymes in vitro long term cultures of Dianthus tenuifolius and Dianthus spiculifolius. Rom J Biol Plant Biol. 2009;54:25–30.

    Google Scholar 

  • Mohamed HI, Akladious SA. Influence of garlic extract on enzymatic and non enzymatic antioxidants in soybean plants (Glycine max) grown under drought stress. Life Sci J. 2014;11(3s):46–58.

    Google Scholar 

  • Molazem D, Qurbanov EM, Dunyamaliyev SA. Role of proline, Na and chlorophyll content in salt tolerance of corn (Zea mays L.). Am Eurasian J Agr Environ Sci. 2010;9:319–24.

    CAS  Google Scholar 

  • Montesinos‐Pereira D, Barrameda‐Medina Y, Romero L, Ruiz JM, Sánchez‐Rodríguez E. Genotype differences in the metabolism of proline and polyamines under moderate drought in tomato plants. Plant Biol. 2014;16(6):1050–7.

    PubMed  Google Scholar 

  • Morgan JM. Differences in osmoregulation between wheat genotypes. Nature. 1977;270:234–5.

    Article  Google Scholar 

  • Morgan JM. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust J Agr Res. 1983;34:607–14.

    Article  Google Scholar 

  • Morgan JM. Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol. 1984;35:299–319.

    Article  Google Scholar 

  • Morgan JM. A gene controlling differences in osmoregulation in wheat. Aust J Plant Physiol. 1991;18:249–57.

    Article  Google Scholar 

  • Morgan JM. Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Aust J Plant Physiol. 1992;19:67–76.

    Article  Google Scholar 

  • Morgan JM. Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crop Res. 1995;40:143–52.

    Article  Google Scholar 

  • Morgan JM, Condon AG. Water use, grain yield, and osmoregulation in wheat. Aust J Plant Physiol. 1986;13:523–32.

    Article  Google Scholar 

  • Mu P, Li Z. Correlation analysis and QTL mapping of osmotic potential in japonica rice under upland and lowland conditions. Can J Plant Sci. 2013;93(5):785–92.

    Article  Google Scholar 

  • Munns R. Why measure osmotic adjustment? Aust J Plant Physiol. 1988;15:717–26.

    Article  Google Scholar 

  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Weir R. Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Aust J Plant Physiol. 1981;8:93–105.

    Article  CAS  Google Scholar 

  • Munns R, Brady CJ, Barlow EWR. Solute accumulation in the apex and leaves of wheat during water stress. Aust J Plant Physiol. 1979;6:379–89.

    Article  CAS  Google Scholar 

  • Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol. 2003;160:395–401.

    Article  CAS  PubMed  Google Scholar 

  • Naeem MK, Ahmed M, Noreen S, Shah MKN, Iqbal MS. Estimation of genetic components for plant growth and physiological traits of wheat (Triticum aestivum L.) under normal and stress conditions. SAARC J Agr. 2015;13(1):90–8.

    Article  Google Scholar 

  • Nasibi F, Kalantari KM, Barand A. Effect of seed pre-treatment with L-arginine on improvement of seedling growth and alleviation of oxidative damage in canola plants subjected to salt stress. Iran J Plant Physiol. 2014;5(1):1217–24.

    Google Scholar 

  • Nawaz K, Ashraf M. Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci. 2010;196(1):28–37.

    Article  CAS  Google Scholar 

  • Nayyar H, Chander S. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci. 2004;190:355–65.

    Article  CAS  Google Scholar 

  • Nguyen HT, Babu RC, Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci. 1997;37:1426–34.

    Article  Google Scholar 

  • Nguyen TX, Nguyen T, Alameldin H, Goheen B, Loescher W, Sticklen M. Transgene Pyramiding of the HVA1 and mtlD in T3 maize (Zea mays L.) plants confers drought and salt tolerance, along with an increase in crop biomass. Int J Agron. 2013.

    Google Scholar 

  • Nikolaeva MK, Maevskaya SN, Voronin PY. Activities of antioxidant and osmoprotective systems and photosynthetic gas exchange in maize seedlings under drought conditions. Russ J Plant Physiol. 2015;62(3):314–21.

    Article  CAS  Google Scholar 

  • Nio SA. Osmotic adjustment and solutes in leaves of wheat (Triticum aestivum L.) during. 2009.

    Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol. 1995;109:735–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Xiong F, Liu J, Sui Y, Zeng Z, Lu BR, Liu Y. Co-expression of ApGSMT and ApDMT promotes biosynthesis of glycine betaine in rice (Oryza sativa L.) and enhances salt and cold tolerance. Environ Exp Bot. 2014;104:16–25.

    Article  CAS  Google Scholar 

  • Nounjana N, Nghiab PT, Theerakulpisuta P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol. 2012;169:596–604.

    Article  CAS  Google Scholar 

  • Nuccio ML, Rhodes D, Mcneil SD, Hanson AD. Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol. 1999;2:128–34.

    Article  CAS  PubMed  Google Scholar 

  • Nusrat N, Shahbaz M, Perveen S. Modulation in growth, photosynthetic efficiency, activity of antioxidants and mineral ions by foliar application of glycinebetaine on pea (Pisum sativum L.) under salt stress. Acta Physiol Plantarum. 2014;36(11):2985–98.

    Article  CAS  Google Scholar 

  • Ogawa S, Mitsuya S. S‐methylmethionine is involved in the salinity tolerance of Arabidopsis thaliana plants at germination and early growth stages. Physiol Plantarum. 2012;144(1):13–9.

    Article  CAS  Google Scholar 

  • Ogren WL. Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol. 1984;35:415–42.

    Article  CAS  Google Scholar 

  • Ort DR. When there is too much light. Plant Physiol. 2001;125:29–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Phan Tran LS. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol. 2014;202:35–49.

    Article  PubMed  Google Scholar 

  • Pandey V, Shukla A. Acclimation and tolerance strategies of rice (Oryza sativa L.) under drought stress. Rice Sci. 2015;22(3):1.

    Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, et al. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics. 2010;284:121–36.

    Article  CAS  PubMed  Google Scholar 

  • Panicot M, Masgrau C, Borrell A, Cordeiro A, Tiburcio AF, Altabella T. Effects of putrescine accumulation in tobacco transgenic plants with different expression of oat arginine decarboxylases. Physiol Plantarum. 2002;114:281–7.

    Article  CAS  Google Scholar 

  • Panta A, Panis B, Ynouye C, Swennen R, Roca W. Development of a PVS2 droplet vitrification method for potato cryopreservation. Cryo-Lett. 2014;35(3):255–66.

    CAS  Google Scholar 

  • Paradisone V, Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Esposito S, Ruiz JM. Roles of some nitrogenous compounds protectors in the resistance to zinc toxicity in Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco Acta Physiol Plantarum. 2015;37(7):1–8.

    CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res. 2014;22(6):4056–75.

    Article  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, Denoma J, Yuwansiri R, Murata N, Chen THH. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J. 2004;40:474–87.

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen THH. Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ. 2007;30:994–1005.

    Article  CAS  PubMed  Google Scholar 

  • Parry M, Andraloje PJ, Khan S, Lea PJ, Keys A. Rubisco activity: effect of drought stress. Ann Bot. 2002;89:833–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot. 2007;58(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  • Patel PK, Hemantaranjan A. Salicylic acid induced alteration in dry matter partitioning, antioxidant defence system and yield in chickpea (Cicer arietinum L.) under drought stress. Asian J Crop Sci. 2012;4(3):86–102.

    Article  Google Scholar 

  • Peng Z, Lu Q, Verma DPS. Reciprocal regulation of D1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes control levels during and after osmotic stress in plants. Mol Gen Genet. 1996;253:334–41.

    CAS  PubMed  Google Scholar 

  • Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 1995;107:125–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pino MT. Enhanced in vitro drought tolerance of Solanum tuberosum and Solanum commersonii plants overexpressing the ScCBF1 gene = Solanum tuberosum y Solanum commersonii, sobre-expresando el gen ScCBF1, mejoraron su tolerancia a sequía en condiciones de cultivo in vitro. 2013.

    Google Scholar 

  • Pino MT, Ávila A, Molina A, Jeknic Z, Chen TH. Enhanced in vitro drought tolerance of Solanum tuberosum and Solanum commersonii plants overexpressing the ScCBF1 gene. Cien Inv Agr. 2013;40:171–84.

    Article  Google Scholar 

  • Pintó-Marijuan M, Munné-Bosch S. Ecophysiology of invasive plants: osmotic adjustment and antioxidants. Trends Plant Sci. 2013;18(12):660–6.

    Article  PubMed  CAS  Google Scholar 

  • Pospisilova J, Haisel D, Vankova R. Responses of transgenic tobacco plants with increased proline content to drought and/or heat stress. Am J Plant Sci. 2011;2(3):318.

    Article  CAS  Google Scholar 

  • Prasertsak A, Fukai S. Nitrogen availability and water stress interaction on rice growth and yield. Field Crop Res. 1997;52:249–60.

    Article  Google Scholar 

  • Price A, Courtois B. Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regul. 1999;29:123–33.

    Article  CAS  Google Scholar 

  • Pugnaire FI, Serrano L, Pardos J. Constraints by water stress on plant growth. In: Passarakli M, editor. Handbook of plant and crop stress. 2nd ed. New York: Marcel Dekker; 1999.

    Google Scholar 

  • Pyngrope S, Bhoomika K, Dubey RS. Reactive oxygen species, ascorbate–glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma. 2013;250(2):585–600.

    Article  CAS  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci. 2004;166:141–9.

    Article  CAS  Google Scholar 

  • Quéro A, Fliniaux O, Elboutachfaiti R, Petit E, Guillot X, Hawkins S, Mesnard F et al. β-Aminobutyric acid increases drought tolerance and reorganizes solute content and water homeostasis in flax (Linum usitatissimum). Metabolomics. 2015, pp 1–13.

    Google Scholar 

  • Quisenberry JE, Cartwright GB, Mcmichael BL. Genetic relationship between turgor maintenance and growth in cotton germplasm. Crop Sci. 1984;24:479–82.

    Article  Google Scholar 

  • Rabert GA, Manivannan P, Somasundaram R, Panneerselvam R. Triazole compounds alters the antioxidant and osmoprotectant status in drought stressed Helianthus annuus L. plants. Emirates J Food Agr. 2014; 26(3): 265

    Google Scholar 

  • Rahnama H, Vakilian H, Fahimi H, Ghareyazie B. Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plantarum. 2011;33(4):1521–32.

    Article  CAS  Google Scholar 

  • Ramalho JC, Zlatev ZS, Leitão AE, Pais IP, Fortunato AS, Lidon FC. Moderate water stress causes different stomatal and non‐stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes. Plant Biol. 2014;16(1):133–46.

    Article  CAS  PubMed  Google Scholar 

  • Rana RM, Rehman SU, Ahmed J, Bilal M. A comprehensive overview of recent advances in drought stress tolerance research in wheat (Triticum aestivum L.). Asian J Agric Biol. 2013;1(1):9–37.

    Google Scholar 

  • Ranganayakulu GS, Veeranagamallaiah G, Sudhakar C. Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. Afr J Plant Sci. 2013;12:586–92.

    Google Scholar 

  • Rathinasabapathi B. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot. 2000;86:709–16.

    Article  CAS  Google Scholar 

  • Rattan A, Kapoor N, Bhardwaj R. Role of brassinosteroids in osmolytes accumulation under salinity stress in Zea mays plants. Int J Sci Res. 2012;3(9):1822–7.

    Google Scholar 

  • Reguera M, Peleg Z, Blumwald E. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta. 2012;1819:186–94.

    Article  CAS  PubMed  Google Scholar 

  • Rezaei MA, Kaviani B, Jahanshahi H. Application of exogenous glycine betaine on some growth traits of soybean (Glycine max L.) cv. DPX in drought stress conditions. Sci Res Essays. 2012;7:432–6.

    CAS  Google Scholar 

  • Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 1993;44:357–84.

    Article  CAS  Google Scholar 

  • Rhodes D, Samaras Y. Genetic control of osmoregulation in plants. In: Strange K, editor. Cellular and molecular physiology of cell volume regulation. Boca Raton: CRC; 1994. p. 347–61.

    Google Scholar 

  • Riahi M, Ehsanpour AA. Responses of transgenic tobacco (Nicotiana plambaginifolia) over-expressing P5CS gene underin vitrosalt stress. Prog Biol Sci. 2013;2(2):76–84.

    Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A. 2007;104:19631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales MA, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos J, Covarrubias AA. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem. 2012;56:24–34.

    Article  CAS  PubMed  Google Scholar 

  • Rybka K, Nita Z. Physiological requirements for wheat ideotypes in response to drought threat. Acta Physiol Plantarum. 2015;37(5):1–13.

    Article  CAS  Google Scholar 

  • Saadia M, Jamil A, Akram NA, Ashraf M. A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Molecules. 2012;17(5):5803–15.

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Guo W, Ullah I, Tabbasam N, Zafar Y, Zhang T. QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechnol. 2011;14(3):3.

    Google Scholar 

  • Saibi W, Feki K, Mahmoud RB, Brini F. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta. 2015;242(5):1187–94.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot. 2000;51:81–8.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 2002;25:163–71.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata A, Murata N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol. 1998;38:1011–9.

    Article  CAS  PubMed  Google Scholar 

  • Saker MM, Tawfik RS, Sammour RH. In vitro selection for drought tolerant line of Linum usitatissimum L. Cv. Sakha2. AOBR. 2014;1(1):41–51.

    Google Scholar 

  • Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci. 2005;10:297–304.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Ruiz JM, et al. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 2010;178(1):30–40.

    Article  CAS  Google Scholar 

  • Saradhi P, Alia P, Arora S, Prasad KV. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun. 1995;209:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Sarafraz-Ardakani MR, Khavari-Nejad RA, Moradi F, Najafi F. Abscisic acid and cytokinin-induced osmotic and antioxidant regulation in two drought-tolerant and drought-sensitive cultivars of wheat during grain filling under water deficit in field conditions. Not Sci Biol. 2014;6(3):354–62.

    Article  Google Scholar 

  • Sawahel W. Improved performance of transgenic glycine betaine-accumulating rice plants under drought stress. Biol Plant. 2004;47:39–44.

    Article  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol. 2007;10:296–302.

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ. 2002;25:333–41.

    Article  PubMed  Google Scholar 

  • Setter TL. Analysis of constituents for phenotyping drought tolerance in crop improvement. Front Physiol. 2012;3:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahbaz M, Masood Y, Perveen S, Ashraf M. Is foliar-applied glycinebetaine effective in mitigating the adverse effects of drought stress on wheat (Triticum aestivum L.)? J App Bot Food Qual. 2012;84(2):192.

    Google Scholar 

  • Sharma SS, Dietz KJ. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot. 2006;57:711–26.

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, Davies WJ. Solute regulation and growth by roots and shoots of waterstressed maize plants. Planta. 1979;147:43–9.

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, Hsiao TC, Silk WK. Growth of the maize primary root at low water potentials. II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol. 1990;93:1337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shehab GG, Ahmed OK, El-Beltagi HS. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not Bot Horti Agr Cluj-Napoca. 2010;38(1):139–48.

    CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 1997;113:1177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Fan M, Iwama K, Li F, Zhang Z, Jia L. Physiological basis of drought tolerance in potato grown under long-term water deficiency. Int J Plant Prod. 2015;9(2).

    Google Scholar 

  • Silvente S, Sobolev AP, Lara M. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One. 2012;7(6).

    Google Scholar 

  • Sinclair TR. Model analysis of plant traits leading to prolonged crop survival during severe drought. Field Crop Res. 2000;68:211–7.

    Article  Google Scholar 

  • Sinclair TR, Muchow RC. System analysis of plant traits to increase grain yield on limited water supplies. Agron J. 2001;93:263–70.

    Article  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio Technol. 2015;14(3):407–26.

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Train S, Verma DPS, Sayre RT. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell. 2002;14:2837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slabbert MM, Krüger GHJ. Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. S Afr J Bot. 2014;95:123–8.

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989;28:1057–60.

    Article  CAS  Google Scholar 

  • Somboonwatthanaku I, Dorling S, Leung S, McManus MT. Proline biosynthetic gene expression in tissue cultures of rice (Oryza sativa L.) in response to saline treatment. Plant Cell Tiss Organ Cult. 2010;103(3):369–76.

    Article  CAS  Google Scholar 

  • Soren KR, Ali K, Tyagi V, Tyagi A. Recent advances in molecular breeding of drought tolerance in rice (Oryza sativa L.). Indian J Biotechnol. 2010;9:233–51.

    CAS  Google Scholar 

  • Steuter AA, Mozafar A, Goodin JR. Water potential of aqueous polyethylene glycol. Plant Physiol. 1981;67:64–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbab O, Sivakumar M, Pandurangaiah M, Kiranmai K, Lokesh U. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. Plant Cell Reports. 2015;34:141–56.

    Google Scholar 

  • Sultan MARF, Hui L, Yang LJ, Xian ZH. Assessment of drought tolerance of some Triticum L. species through physiological indices. Czech J Genet Plant Breed. 2012;48(4):178–84.

    Google Scholar 

  • Summart J, Thanonkeo P, Panichajakul S, Prathepha P, McManus MT. Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. Afr J Biotechnol. 2010;9(2).

    Google Scholar 

  • Székely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008;53:11–28.

    Article  PubMed  CAS  Google Scholar 

  • Sziderics AH, Oufir M, Trognitz F, Kopecky D, Matušíková I, Hausman JF, Wilhelm E. Organ-specific defence strategies of pepper (Capsicum annuum L.) during early phase of water deficit. Plant Cell Rep. 2010;29(3):295–305.

    Article  CAS  PubMed  Google Scholar 

  • Szoke A, Miao GH, Hong Z, Verma DPS. Subcellular location of Δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol. 1992;99:1642–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabaeizadeh Z. Drought-induced responses in plant cells. In: Jeon, KW (ed.), International Review of Cytology. 1998. pp. 193–247.

    Google Scholar 

  • Taha MH, Abdallah MM, Abd El-Monem AA. Improving salinity tolerance and yield of barley (Horde vulgare L.) plants using arginine. Int J Acad Res. 2013;5(5):156–99.

    Article  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 2002;29:417–26.

    Article  CAS  PubMed  Google Scholar 

  • Talaat NB. Effective microorganisms improve growth performance and modulate the ROS-scavenging system in common bean (Phaseolus vulgaris L.) plants exposed to salinity stress. J Plant Growth Regul. 2015;34(1):35–46.

    Article  CAS  Google Scholar 

  • Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT. Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul. 2015;75(1):281–95.

    Article  CAS  Google Scholar 

  • Talat A, Nawaz K, Hussian K, Bhatti KH, Siddiqi EH, Khalid A, Sharif MU, et al. Foliar application of proline for salt tolerance of two wheat (Triticum aestivum L.) cultivars. World Appl Sci J. 2013;22(4):547–54.

    CAS  Google Scholar 

  • Tan W, Blake TJ, Boyle TJB. Drought tolerance in faster- and slower-growing black spruce (Picea mariana) progenies: I. StomataI and gas exchange response to osmotic stress. Physiol Plant. 1992;85(4):645–51.

    Article  CAS  Google Scholar 

  • Tang W, Sun J, Liu J, Liu F, Yan J, Gou X, Liu Y, et al. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol. 2014;4(86):443–54.

    Article  CAS  Google Scholar 

  • Tangpremsri T, Fukai S, Fischer KS, Henzell RG. Genotypic variation in osmotic adjustment in grain sorghum. 2. Relation with some growth attributes. Aust J Agr Res. 1991;42:759–67.

    Article  Google Scholar 

  • Tari I, Kiss G, Deér AK, Csiszár J, Erdei L, Gallé Á, Gémes K, Horváth F, Poór P, Szepesi Á, Simon LM. Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plant. 2010;54:677–83.

    Article  CAS  Google Scholar 

  • Tayal D, Srivastava PS, Bansal KC. Transgenic crops for abiotic stress tolerance. In: Srivastava PS, Narula A, Srivastava S, editors. Plant biotechnology and molecular markers. New Delhi: Anamaya; 2004. p. 346–65.

    Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet. 1998;96:688–98.

    Article  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 1999;401:914–7.

    Article  CAS  Google Scholar 

  • Theerakulpisut P, Gunnula W. Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt tolerance rice seedlings. Asian J Crop Sci. 2012;4:165–70.

    Article  Google Scholar 

  • Theerakulpisut P, Phongngarm S. Alleviation of adverse effects of salt stress on rice seedlings by exogenous trehalose. Asian J Crop Sci. 2013;5(4):405–15.

    Article  Google Scholar 

  • Thomson JA, Mundree SG, Shepherd DM, Rybicki EP. The use of African indigenous genes in the development of transgenic maize tolerant to drought and resistant to maize streak virus. In: Wambugu F, Kamanga D, editors. Biotechnology in Africa. New York: Springer; 2014. p. 135–55.

    Chapter  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice. 2012;5(1):1–9.

    Article  Google Scholar 

  • Tookalloo MR. Evaluation of the effect of foliar absorption of glycine betaine on physiological characteristics of rapeseed cultivars (Brassica napus). 2011.

    Google Scholar 

  • Tschaplinski TJ, Tuskan GA, Gunderson CA. Water-stress tolerance of black cottonwood and eastern cottonwood clones and four of their hybrid progeny. I. Growth, water relations and gas exchange. Canad J For Res. 1994;24:346–71.

    Google Scholar 

  • Tschaplinski TJ, Tuskan GA, Gebre GM, Todd DE. Drought resistance of two hybrid Populus clones grown in large-scale plantation. Tree Physiol. 1998;18:653–8.

    Article  PubMed  Google Scholar 

  • Türkan I, Demiral T. Recent developments in understanding salinity tolerance. Environ Exp Bot. 2009;67:2–9.

    Article  CAS  Google Scholar 

  • Turner NC, Jones MM. Turgor maintenance by osmotic adjustment: a review and evaluation. In: Turner NC, Kramer PJ, editors. Adaptation of plants to water and high temperature stress. New York: Wiley; 1980. p. 87–103.

    Google Scholar 

  • Turner NC, Begg JE, Tonnet ML. Osmotic adjustment of sorghum and sunflower crops on response to water deficits and its influence on the water potential at which stomata close. Aust J Plant Physiol. 1978;5:597–608.

    Article  CAS  Google Scholar 

  • Turner NC, O’Toole JC, Cruz RT, Yambao EB, Ahmad S, Namuco OS, Dingkuhn M. Responses of seven diverse rice cultivars to water deficits. II. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis. Field Crop Res. 1986;13:273–86.

    Article  Google Scholar 

  • Tyagi A, Sairam RK. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci. 2004;86(3):407–20.

    Google Scholar 

  • Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006;9:189–95.

    Article  CAS  PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, Iglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrels ME. Comparative mapping in grasses. Wheat relationships. Mol Gen Genet. 1995;248:744–54.

    Article  PubMed  Google Scholar 

  • Vanková R, Dobrá J, Štorchová H. Recovery from drought stress in tobacco: an active process associated with the reversal of senescence in some plant parts and the sacrifice of others. Plant Signal Behav. 2012;7(1):19–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact. 2011;1:1–14.

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids. 2008;35:753–9.

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol. 2005;16:123–32.

    Article  CAS  PubMed  Google Scholar 

  • Voetberg GS, Sharp RE. Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiol. 1991;96:1125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol. 2007;63:609–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HY, Huang YC, Chen SF, Yeh KW. Molecular cloning, characterization and gene expression of a water deficiency and chilling induced proteinase inhibitor I gene family from sweet potato (Ipomoea batatas Lam.) leaves. Plant Sci. 2003;165:191–203.

    Article  CAS  Google Scholar 

  • Wang CL, Zhang SC, Qi SD, Zheng CC, Wu CA. Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11. Gene. 2015;575(2 Pt 1):206–12.

    PubMed  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI. Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics. 2013;14:157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Nakagawa A, Izumi S, Shimada H, Sakamoto A. RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis. FEBS Lett. 2010;584(6):1181–6.

    Article  CAS  PubMed  Google Scholar 

  • Watson MB, Emory KK, Piatak RM, Malmberg RL. Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J. 1998;13:231.

    Article  CAS  PubMed  Google Scholar 

  • Wei GP, Yang LF, Zhu YL, Chen G. Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Sci Hortic. 2009;120:443–51.

    Article  CAS  Google Scholar 

  • Westgate ME, Boyer JS. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta. 1985;164:540–9.

    Article  CAS  PubMed  Google Scholar 

  • Williamson JD, Jennings DB, Guo WW, Pharr DM, Ehrenshaft M. Sugar alcohols, salt stress and fungal resistance: polyols: multifunctional plant protection? J Am Soc Hortic Sci. 2002;127:467–73.

    CAS  Google Scholar 

  • Wilson JR, Fisher MJ, Schulze E-D, Dolby GR, Ludlow MM. Comparison between pressure-volume and dewpoint-hygrometry techniques for determining the water relations characteristics of grass and legume leaves. Oecologia. 1979;41:77–88.

    Article  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Zhang G, et al. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One. 2013;8(1).

    Google Scholar 

  • Wu GQ, Wang CM, Su YY, Zhang JJ, Feng RJ, Liang N. Assessment of drought tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using inorganic and organic solutes accumulation criteria. Soil Sci Plant Nutr. 2014;60(4):565–76.

    Article  CAS  Google Scholar 

  • Wu GQ, Feng RJ, Liang N, Yuan HJ, Sun WB. Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regul. 2015;75(1):307–16.

    Article  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun. 2007;352:486–90.

    Article  CAS  PubMed  Google Scholar 

  • Yiu JC, Tseng MJ, Liu CW, Kuo CT. Modulation of NaCl stress in Capsicum annuum L. seedlings by catechin. Sci Hortic. 2012;134:200–9.

    Article  CAS  Google Scholar 

  • Yousif BS, Liu LY, Nguyen NT, Masaoka Y, Saneoka H. Comparative studies in salinity tolerance between New Zealand spinach (Tetragonia tetragonioides) and chard (Beta vulgaris) to salt stress. Agr J. 2010;5(1):19–24.

    CAS  Google Scholar 

  • Zadehbagheri M, Azarpanah A, Javanmardi S. Proline metabolite transport an efficient approach in corn yield improvement as response to drought conditions. Nature. 2014;566:596.

    Google Scholar 

  • Zahra ARF, De Costa DM, De Costa WAJM. Identification of differentially-expressed genes in response to salt stress in the salt-tolerant Sri Lankan rice variety At354. J Nat Sci F Sri Lanka. 2013;41:2.

    Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci. 2004;167:781–8.

    Article  CAS  Google Scholar 

  • Zhang J, Nguyen HT, Blum A. Genetic analysis of osmotic adjustment in crop plants. J Exp Bot. 1999;50:291–302.

    Article  CAS  Google Scholar 

  • Zhang M, Chen Q, Shen S. Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiol Plantarum. 2011;33(2):313–8.

    Article  CAS  Google Scholar 

  • Zhang LX, Lai JH, Liang ZS, Ashraf M. Interactive effects of sudden and gradual drought stress and foliar-applied glycine betaine on growth, water relations, osmolyte accumulation and antioxidant defence system in two maize cultivars differing in drought tolerance. J Agron Crop Sci. 2014;200:425–33.

    Article  CAS  Google Scholar 

  • Zhang LX, Zheng P, Ruan Z, Tian L, Ashraf M. Nitric oxide accumulation and glycinebetaine metabolism in two osmotically stressed maize cultivars supplied with different nitrogen forms. Biol Plantarum. 2015;59(1):183–6.

    Article  CAS  Google Scholar 

  • Zhao X, Xu M, Wei R, Liu Y. Expression of OsCAS (calcium-sensing receptor) in an Arabidopsis mutant increases drought tolerance. PLoS One. 2015;10(6).

    Google Scholar 

  • Zhong T, Zhang L, Sun S, Zeng H, Han L. Effect of localized reduction of gibberellins in different tobacco organs on drought stress tolerance and recovery. Plant Biotechnol Rep. 2014;8(5):399–408.

    Article  Google Scholar 

  • Zhu JK. Plant salt tolerance. Trends Plant Sci. 2001;6:66–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gong H, Chen G, Wang S, Zhang C. Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ. 2005;62:1–14.

    Article  Google Scholar 

  • Zia MA, Ashraf M, Akram NA, Hussain M. Heat-induced regulation of antioxidant defense system and nutrient accumulation in hexaploid bread wheat (Triticum aestivum l.). Pak J Bot. 2014;46(3):957–71.

    CAS  Google Scholar 

  • Zivcak M, Brestic M, Olsovska K, Slamka P. Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ. 2008;54:133–9.

    Article  CAS  Google Scholar 

  • Zivcak M, Repkova J, Olsovska K, Brestic M. Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. Cereal Res Commun. 2009;37:569–72.

    Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Allakhverdiev SI. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res. 2013;117(1–3):529–46.

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Kalaji HM, Shao HB, Olsovska K, Brestic M. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photoch Photobiol B. 2014;137:107–15.

    Article  CAS  Google Scholar 

  • Zsigmond L, Szepesi Á, Tari I, Rigó G, Király A, Szabados L. Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci. 2012;182:87–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Zivcak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zivcak, M., Brestic, M., Sytar, O. (2016). Osmotic Adjustment and Plant Adaptation to Drought Stress. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_5

Download citation

Publish with us

Policies and ethics