Skip to main content

Structural Behavior Under Variable Loading

  • Chapter
  • First Online:
Simplified Theory of Plastic Zones
  • 719 Accesses

Abstract

The Simplified Theory of Plastic Zones (STPZ) to be developed in this book is mainly beneficial for the analysis of structures that are subjected to variable loads beyond the elastic limit, and therefore some phenomena of structural behavior are discussed in this chapter that are relevant to the service life of a structure, such as local and directional stress redistribution. Particular emphasis is placed on the phenomena of ratcheting and elastic and plastic shakedown. For this, the role of kinematic hardening is addressed. Some examples show that different causes may lead to the development of a ratcheting mechanism. After introducing the concept of residual stress, calculation methods are discussed which either result in load factors for the shakedown of a structure or provide the quantities required for a lifetime calculation according to design codes, such as strain ranges for fatigue analyses and cyclic accumulated distortions for ratcheting assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “time” is not used here in the sense of a physical quantity, but only as an ordering quantity for successive operations. In the literature it is sometimes referred to as “pseudo-time”. The term “histogram” is to be understood in the same sense.

  2. 2.

    Ansys Inc. says: “ Regarding defect #92325, this is not a defect but a limitation with the sublayer/overlay model according to development”.

References

  1. Miller, D.R.: Thermal-stress ratchet mechanism in pressure vessels. ASME J. Basic Eng. 81, 190–196 (1959)

    Google Scholar 

  2. Mulcahy, T.M.: An assessment of kinematic hardening thermal ratcheting. Trans. ASME J. Eng. Mater. Technol. 96(3), 214–221 (1974)

    Article  Google Scholar 

  3. Jiang, W., Leckie, F.A.: A direct method for the shakedown analysis of structures under sustained and cyclic loads. J. Appl. Mech. 59, 251–260 (1992)

    Article  MATH  Google Scholar 

  4. Ponter, A.R.S.: Shakedown and Ratchetting Below the Creep Range, CEC Report EUR8702 EN. European Commission, Brussels (1983)

    Google Scholar 

  5. ANSYS Release 14.5, ANSYS Inc. Canonsburg, USA (2012)

    Google Scholar 

  6. Owen, R.J., Prakash, A., Zienkiewicz, O.C.: Finite Element Analysis of Non-Linear Composite Materials by Use of Overlay Systems, Computers and Structures, vol. 4, pp. 1251–1267. Pergamon Press, New York (1974)

    Google Scholar 

  7. Wolters, J., Majumdar, S.: A three-bar Model for Ratcheting of Fusion Reactor First Wall. Argonne National Laboratory, Argonne, Illinois (1994)

    Book  Google Scholar 

  8. Hübel, H.: Basic conditions for material and structural ratcheting. Nucl. Eng. Des. 162, 55–65 (1996)

    Article  Google Scholar 

  9. Sicherheitstechnische Regel des KTA, KTA 3201.2. Komponenten des Primärkreises von Leichtwasserreaktoren, Teil 2: Auslegung, Konstruktion und Berechnung. Fassung 6/96 (including correction from BAnz. Nr. 129, 13.07.2000). Office of the KTA c/o Bundesamt für Strahlenschutz, Salzgitter (2000)

    Google Scholar 

  10. Bree, J.: Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements. J. Strain Analysis 2(3), 226–238 (1967)

    Article  Google Scholar 

  11. Hill, R.: The Mathematical Theory of Plasticity, pp 292–294. Oxford University Press, London (1950)

    Google Scholar 

  12. Sartory, W.K.: Structural Design for Elevated Temperature Environments – Creep. Ratchet, Fatigue, and Fracture Effect of peak thermal strain on simplified ratchetting analysis procedures, ASME Proceedings, PVP 163, 31–38 (1989)

    Google Scholar 

  13. Burth, K., Brocks, W.: Plastizität: Grundlagen und Anwendungen für Ingenieure. Vieweg, Braunschweig/Wiesbaden (1992)

    Book  Google Scholar 

  14. Hübel, H.: Bemerkungen zur Ausnutzung plastischer Querschnitts- und Systemreserven. STAHLBAU 72(12), 844–852 (2003)

    Article  Google Scholar 

  15. Sawczuk, A.: shakedown analysis of elastic-plastic structures. Nucl. Eng. Des. 28, 121–136 (1974)

    Article  Google Scholar 

  16. Hübel, H.: Plastische Dehnungserhöhungsfaktoren in Regelwerken und Vorschlag zur Etablierung angemessenerer Faktoren. Gesamthochschule Kassel, Institut für Mechanik, Mitteilung Nr. 4 (Dissertation) (1985)

    Google Scholar 

  17. Haibach, E.: Betriebsfestigkeit. Verfahren und Daten zur Bauteilberechnung. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  18. Neuber, H.: Theory of stress concentration for shear strained prismatical bodies with arbitrary, nonlinear stress-strain law. Trans. ASME, J. Appl. Mech. 28(4), 544–550 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Roche, R.L.: Practical procedure for stress classification. Int. J. Pres. Ves. Piping 37, 27–44 (1989)

    Article  Google Scholar 

  20. Seshadri, R.: The Generalized Local Stress Strain (GLOSS) Analysis – Theory and Applications. Trans. ASME J. Pressure Vessel Technol. 113, 219–227 (1991)

    Article  Google Scholar 

  21. Kalnins, A.: Fatigue analysis of pressure vessels with twice-yield plastic FEA. ASME PVP 419, 43–52 (2001)

    Google Scholar 

  22. Hübel, H., et al.: Performance study of the simplified theory of plastic zones and the Twice-Yield method for the fatigue check. Int. J. Press. Vessels Pip. 116, 10–19 (2014). doi:10.1016/j.ijpvp.2014.01.003

    Article  Google Scholar 

  23. Ponter, A.R.S., Karadeniz, S., Carter, K.F.: The computation of shakedown limits for structural components subjected to variable thermal loading – Brussels diagrams, CEC Report EUR 12686 EN. European Commission, Brussels (1990)

    Google Scholar 

  24. König, J.A., Maier, G.: Shakedown Analysis of Elastoplastic Structures: A Review of Recent Developments. Nucl. Eng. Des. 66, 81–95 (1981)

    Article  Google Scholar 

  25. Heitzer, M., Staat, M.: FEM-computation of load carrying capacity of highly loaded passive components by direct methods. Nucl. Eng. Des. 193, 349–358 (1999)

    Article  Google Scholar 

  26. Staat, M., Heitzer, M.: LISA – a European project for FEM-based limit and shakedown analysis. Nucl. Eng. Des. 206, 151–166 (2001). doi:10.1016/S0029-5493(00)00415-5

    Article  Google Scholar 

  27. Seshadri, R.: residual stress estimation and shakedown evaluation using GLOSS analysis. J. Press. Vessel Technol. 116(3), 290–294 (1994). doi:10.1115/1.2929590

    Article  Google Scholar 

  28. Mackenzie, D., Boyle, J.T., Hamilton, R.: The elastic compensation method for limit and shakedown analysis: a review. Trans. IMechE J. Strain Anal. Eng. Des. 35(3), 171–188 (2000)

    Article  Google Scholar 

  29. Ponter, A.R.S., Carter, K.F.: Shakedown state simulation techniques based on linear elastic solutions. Comput. Methods Appl. Mech. Eng. 140, 259–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, H.: Linear matching method for design limits in plasticity, computers. Materials Continua. Tech. Sci. Press 20(2), 159–183 (2010)

    Google Scholar 

  31. Ladevèze, P.: Nonlinear Computational Structural Mechanics – New Approaches and Non-Incremental Methods of Calculation. Springer, New York (1999)

    MATH  Google Scholar 

  32. Maier, G., Comi, C., Corigliani, A., Perego, U., Hübel, H.: Bounds and estimates on inelastic deformations, Commission of the European Communities, contract RA1-0162-I and RA1-0168-D, Report EUR 16555 EN. European Commission, Brussels (1992)

    Google Scholar 

  33. Spiliopoulos, K.V., Panagiotou, K.D.: A direct method to predict cyclic steady states of elastoplastic structures. Comput. Methods Appl. Mech. Eng. 223–224, 186–198 (2012)

    Google Scholar 

  34. Spiliopoulos, K.V., Panagiotou, K.D.: The residual stress decomposition method (RSDM): a novel direct method to predict cyclic elastoplastic states. In: Spiliopoulos, K., Weichert, D. (Eds.) Direct Methods for Limit States in Structures and Materials, pp 139–155. Springer Science + Business Media, Dordrecht (2014). doi:10.1007/978-94-007-6827-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartwig Hübel .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hübel, H. (2017). Structural Behavior Under Variable Loading. In: Simplified Theory of Plastic Zones. Springer, Cham. https://doi.org/10.1007/978-3-319-29875-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29875-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29873-3

  • Online ISBN: 978-3-319-29875-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics