Skip to main content

Optical Vortices in Ring and Non-ring Interferometers and a Model of the Digital Communication System

  • Chapter
  • First Online:
Cryptology Transmitted Message Protection

Part of the book series: Signals and Communication Technology ((SCT))

  • 624 Accesses

Abstract

Steganography and physical resistance of the confidential communication system using properties of the wave front of the electromagnetic wave with screw dislocation is discussed. This system uses the high-speed vortex detector offered by authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys Rev Lett 2005;94:153901.

    Google Scholar 

  2. Aksenov VP, Izmailov IV, Kanev FYu, Poizner BN. Adaptive system for data transmission with the help of optical vortices. In: Atmospheric and oceanic optics. abstracts of the 16-th joint international symposium “Atmospheric and Ocean Optics. Atmospheric Physics”. Tomsk, Russia. 13–15 October 2009. Tomsk, 2009. pp. 166–168.

    Google Scholar 

  3. Hartmann J. Objektivuntersuchungen. Z. Instrum. 1904;1:1–21, 33–47, 97–117.

    Google Scholar 

  4. Shack RB, Platt BC. Production and use of a lenticular Hartmann screen. J. Optics Soc. Am. 1971;61:656–662.

    Google Scholar 

  5. Voitsekhovich V, Sanchez L, Orlov V, Cuevas S. Efficiency of the Hartmann test with different subpupil forms for the measurement of turbulence-induced phase distortions. Appl Opt. 2001;40(9):1299–1304.

    Google Scholar 

  6. Voliar AB, Zhilaitis VZ, Fadeeva TA. Optical vortexes in the small-mode fibers. III. Dislocation reactions, phase transitions and topological two-beam-refraction. Opt Spectrosc. 2000;88(3):446–455.

    Google Scholar 

  7. Aksenov VP, Izmailov IV, Poizner BN, Tikhomirova OV. Wave and beam spatial dynamics of the light field at birth, evolution and annihilation of phase dislocation. Opt Spectrosc. 2002;92(3):452–461.

    Google Scholar 

  8. Aksenov VP, Izmailov IV, Kanev FYu, Starikov FA. Localization of optical vortices and reconstruction of wavefront with screw dislocations. Proc SPIE. 2005;5894:68–78.

    Google Scholar 

  9. Aksenov VP, Izmailov IV, Kanev FYu. Algorithms of a singular wavefront reconstruction. In: Jiang W, editor. The 5-th international workshop on adaptive optics for industry and medicine (29 August–1 September 2005, Beijing, China), Proceedings of SPIE, vol. 6018.—SPIE, Bellingham, WA, 2005. p. 60181B-1-60181B-11.

    Google Scholar 

  10. Aksenov VP, Izmailov IV, Kanev FYu, Starikov FA. Algorithms for the reconstruction of the singular wave front of laser radiation: analysis and improvement of accuracy. Quant Electron. 2008;38(7):673–677.

    Google Scholar 

  11. Ragazzoni R. Pupil plane wavefront sensing with an oscillating prism. J Mod Opt. 1996;43:289–293.

    Google Scholar 

  12. Ragazzoni R, Ghedina A, Baruffolo A, Marchetti E, et al. Testing the pyramid wavefront sensor on the sky. Proc SPIE. 2000;4007:423–429.

    Google Scholar 

  13. Ghigo M, Crimi G, Perennes F. Construction of a pyramidal wavefront sensor for adaptive optics compensation. In: Proceedings of International conference “Beyond Conventional Adaptive Optics”. 2001. p. 465–472.

    Google Scholar 

  14. Kolosov VV. Current lines of energy in the vicinity of dislocation of three-dimension wave field. Atmos Oceanic Opt. 1996;9(12):1631–1638.

    Google Scholar 

  15. Aksenov VP, Kolosov VV, Tartakovskii VA, Fortes BV. Optical vortex in non-uniform media. Atmos Oceanic Opt. 1999;12(10):952–958.

    Google Scholar 

  16. Bobrov BD. Visualization of the phase surface in the vicinity of screw dislocation. Spiral interferometric structures. Opt Spectrosc. 1991;70(2):436–438.

    Google Scholar 

  17. Bobrov BD. Screw dislocations of laser speckle-fields on the interferometer patterns with circular line structure. Quant Electron. 1991;18(7):886–890.

    Google Scholar 

  18. Korolenko VP. Optical vortices. Soros Educ J. 1998;6:94–99.

    Google Scholar 

  19. Mansuripur M, Wrignt E. Linear optical vortices. Opt Photonics News. 1999;10(2):40–44.

    Google Scholar 

  20. Kanev FYu, Lukin VP, Makenova NA. Detection of dislocations as branching points of interference pattern. Proc SPIE. 2001;4357:231–235.

    Google Scholar 

  21. Rockstuhl C, Ivanovskyy AA, Soskin MS, Sal MG, Herzig HP, Dandliker R. High-resolution measurement of phase singularities produced by computer-generated holograms. Opt. Commun. 2004;242:163–182.

    Google Scholar 

  22. Angelsky OV, Maksimyak AP, Maksimyak PP, Hanson SG. Interference diagnostics of white-light vortices. Opt Express. 2005;13:8179–8183.

    Google Scholar 

  23. Soskin MS, Polyanskii PV, Arkhelyuk OO. Computer-synthesized hologram-based rainbow optical vortices. New J Phys. 2004;6:196–204.

    Google Scholar 

  24. Berry MV. Colored phase singularities. New J Phys. 2002;4:66–73.

    Google Scholar 

  25. Berry MV. Exploring the colors of dark light. New J Phys. 2002;4:74–80.

    Google Scholar 

  26. Bogatyryova GV, Felde ChV, Polyanskii PV, Ponomarenko SA, Soskin MS, Wolf E. Partially coherent vortex beams with a separable phase. Opt Lett. 2003;28:878–880.

    Google Scholar 

  27. Angelsky OV, Hanson SG, Maksimyak AP, Maksimyak PP. On the feasibility for determining the amplitude zeroes in polychromatic fields. Opt. Express. 2005;13:4396–4405.

    Google Scholar 

  28. Fried DL. Branch point problem in adaptive optics. J Optics Soc Am. 1998;15(10):2759–2768.

    Google Scholar 

  29. Fried DL. Adaptive optics wave function reconstruction and phase unwrapping when branch points are present. Opt Commun. 2001;200:43–72.

    Google Scholar 

  30. Ghiglia DC, Pritt MD. Two-dimensional phase unwrapping: theory, algorithms, and software. A Wiley-interscience publication, Wiley; 1998. 512 p.

    Google Scholar 

  31. Aksenov V, Izmailov I, Kanev F, Starikov F. Performance of a wavefront sensor in the presence of singular points. In: Slangen P, Cerruti C, editors. Speckle06: Speckles, from grains to flowers (13–15 September 2006, Nimes, France), Proceedings of SPIE, vol. 6341. SPIE, Bellingham, WA, 2006. P. 634133-1–634133-6.

    Google Scholar 

  32. Starikov FA, Kochemasov GG, Kulikov SM, Manachinsky AN, Maslov NV, Ogorodnikov AV, Sukharev SA, Aksenov VP, Izmailov IV, Kanev FYu, Atuchin VV. Wave front reconstruction of an optical vortex by Hartmann–Shack sensor. Opt Lett. 2007;32(16):2291–2293.

    Google Scholar 

  33. Izmailov IV. Development of measurent system for the light field phase: algorithmic aspect. In: Proceedings of international scientific conference “problems of development of natural, engineering and social systems” (Apr. 12–14 2007, Taganrog, Russia). Part 3. Taganrog: Anton Publications, 2007. pp. 16–22 (in Russian).

    Google Scholar 

  34. Kanev FYu, Aksenov VP, Izmailov IV, Starikov FA. Features of the phase recognition of the vortex beam at growth of a number and order of singular points. In: Proceeding of Tomsk Polytechnical University. 2009. vol. 315, no 2. Маthematics and mechanics. Physics. pp. 44–48 (in Russian).

    Google Scholar 

  35. Baker KL, Stappaerts EA, Wilks SC, Gavel D, Young PE, Tucker J, Olivier SS, Silva DA, Olsen J. Open- and closed-loop aberration correction by use of a quadrature interferometric wave-front sensor. Opt Lett. 2004;29(1):47–47.

    Google Scholar 

  36. Baker KL, Stappaerts EA, Wilks SC, Gavel D, Young PE, Tucker J, Olivier SS, Silva DA, Olsen J. Performance of a phase-conjugate engine implementing finite-bit phase correction. Opt. Lett. 2004;29(9):980–982.

    Google Scholar 

  37. Dandliker R, Marki I, Salt M, Nesci A. Measuring optical phase singularities at subwavelength resolution. J Opt A: Pure Appl Opt. 2004;6:189–196.

    Google Scholar 

  38. Smith CP, McDuff R. Charge and position detection of phase singularities using holograms. Opt Commun. 1995;114:37–44.

    Google Scholar 

  39. Zhu B, Ueda K. Real-time wavefront measurement based on diffraction grating holography. Opt Commun. 2003;225:1–6.

    Google Scholar 

  40. Aksenov VP, Banakh VA, Valuev VV, Zuev VE, Morozov VV, Smalikho IN, Zvyk PI. Powerful laser beams in random-non-uniform atmosphere. Under edition of V.A. Banakh. Novosibirsk: Siberian branch of RAS Publication, 1998. 341 p (in Russian).

    Google Scholar 

  41. Lukin VP, Fortes BV. Adaptive beam and images formation in the atmosphere. Novosibirsk: SB RAS Publications, 1999. 214 p. (in Russian).

    Google Scholar 

  42. Kanev FYu, Lukin VP. Adaptive optics. Numerical and experimental investgations. Тomsk: Institute of atmospheric optics Publications, 2005. 250 p. (in Russian).

    Google Scholar 

  43. Fried DL. Using the noise-variance-weighted complex exponential reconstructor with measurements from a standard Hartmann sensor. Report No. TN-103. December 1999.

    Google Scholar 

  44. Kanev F, Aksenov V, Ustinov A, Izmailov I, Poizner B. Reconstruction of a singular wavefront using shack-hartmann sensor. In: Abstracts of the 11-th joint international symposium “Atmospheric and Ocean Optics. Atmospheric Physics”. Tomsk, Russia. 23–26 June 2004. Tomsk, 2004. p. 70.

    Google Scholar 

  45. Kanev F, Aksenov V, Ustinov A, Izmailov I, Poizner B. Comparative analysis of the algorithms for reconstruction of wave front of optical field under the conditions of strong fluctuations. In: Abstracts of the 11-th joint international symposium on”Atmospheric and Ocean Optics. Atmospheric Physics”. Tomsk, Russia. 23–26 June 2004. Tomsk, 2004. p. 79.

    Google Scholar 

  46. Starikov FA, Kochemasov GG, Koltygin MO, Kulikov SM, Manachinsky AN, Maslov NV, Sukharev SA, Aksenov VP, Izmailov IV, Kanev FYu, Atuchin VV, Soldatenkov IS. Correction of vortex laser beam in a closed-loop adaptive system with bimorph mirror. Opt Lett. 2009;34(15):2264–2266.

    Google Scholar 

  47. Aksenov VP, Kanev F, Izmailov I, Starikov F. Singular wavefront reconstruction with the tilts measured by Shack–Hartmann sensor. In: Book of summaries. 16-th international symposium on gas flow and chemical lasers & High power laser conference. Gmunden, Austria, September 4–8, 2006. Gmunden: Stanzell druck, 2006. pp. 158–159.

    Google Scholar 

  48. Izmailov IV, Aksenov VP, Kanev FYu, Starikov FA. Modifications of Fried’s algorithm: increase of precision and phase unwrapping. In: Abstracts of the 14-th international symposium “Atmospheric and Ocean Optics. Atmospheric Physics” (24–30 June 2007, Buryatiya, Russia). Tomsk: IAO SB RAS, 2007. pp. 81–82.

    Google Scholar 

  49. Izmailov IA, Magazannikov AL, Poizner BN. Modeling of processes in the ring interferometer with nonlinearity, delay and diffusion at non-monochromatic radiation. Russ Phys J. 2000;2:29–35.

    Google Scholar 

  50. Izmailov IV, Lyachin AV, Poizner BN. The deterministic chaos in models of the nonlinear ring interferometer. Tomsk: Tomsk State University Publications; 2007. 258 p (in Russian).

    Google Scholar 

  51. Izmailov IA, Magazannikov AL, Poizner BN. Identification of the screw dislocation of the wave front and compensation of its influence on the structure-formation in the ring interferometer. Atmos Oceanic Opt. 2000;13(9):805–812.

    Google Scholar 

  52. Izmailov IA, Poizner BN. Imitation of by nonlinear-optical neuro-network optical vortices recognition. In: Scientific session of MIFI—2003. Scientific collection of 5 All-Russia scientific-technical conference “Neuro-informatics-2002” (Мoscow, Jan. 29–31, 2003). In 2 parts. Мoscow: MIFI, 2003. Part 1. pp. 77–84 (in Russian).

    Google Scholar 

  53. Izmailov IV, Poizner BN, Ravodin VO. The elements of non-linear optics and synergetics in opto-informatics context: the manual. Tomsk: TML-Press; 2007. 92 p (in Russian).

    Google Scholar 

  54. Izmailov IA. Structure-formation in the models of nonlinear ring interferometer in the case of monochromatic linear-polarized with screw dislocation of the wave front. Russ Phys. J. 1999;11:96 (in Russian).

    Google Scholar 

  55. Izmailov IV, Poizner BN. Ring cavity containing liquid crystal as a means of identification of a singular light beam. In: Abstracts of international scientific conference “optics of crystals”. Republic of Belarus, Mozyr. 26–30 September 2000. Mozyr: MSPI; 2000. p. 49 (in Russian).

    Google Scholar 

  56. Izmailov IV, Poizner BN. Ring interferometer with liquid crystal as a means of identification of a singular light beam. In: Shepelevich VV, Egorov NN, editors. International scientific conference “optics of crystals” (26–30 September 2000, Mozyr, Republic of Belarus), Proceedings of SPIE. vol 4358, pp. 227–235 (2001). 9 p.

    Google Scholar 

  57. Izmailov IV, Makukha NE, Poizner BN. Structures self-organization in the model of the ring interferometer under action of the optical vortex. In: Problems of evolution of open system. Collection of papers of international conference. “Organization and evolution of open systems” (Almaty, Kazakhstan. Sept. 24–27, 2001). Issue 4. Almaty: Evero Publications, 2002. pp. 73–81 (in Russian).

    Google Scholar 

  58. Zubinskiy A. Return of analog computers. Comput Rev. 2009;(12). URL:http://ko.com.ua/node/42013. (in Russian).

  59. Aksenov VP, Izmailov IV, Kanev FY, Poizner BN. Determination of topological charge of optical vortex according to measurement of the signal intensity at interferometer output: principles and modeling. Atmos Oceanic Opt. 2010;23(11):1036–1041.

    Google Scholar 

  60. Aksenov VP, Izmailov IV, Kanev FY, Poizner BN. Influence of the random phase screen imitating the atmosphere turbulence on operation of the interferometric detector of the topological charge of the optical vortex. Atmos Oceanic Opt. 2010;23(12):1132–1136.

    Google Scholar 

  61. Aksenov V, Izmailov I, Kanev F, Poizner B. Detector of optical vortices as the main element of the system of data transfer: Principles of operation, numerical model, and influence of noise and atmospheric turbulence. Int J Opt. 2012;2012(Article ID 568485):14 p. (doi:10.1155/2012/568485; URL:http://www.hindawi.com/journals/ijo/2012/568485/).

    Google Scholar 

  62. Aksenov VP, Izmailov IV, Kanev FYu, Poizner BN. Optical vortex detector as a basis for a data transfer system: Operational principle, model, and simulation of the influence of turbulence and noise. Opt Commun. 2012;285:905–928. (doi:10.1016/j.optcom.2011.10.060).

    Google Scholar 

  63. Nanostructures in electronics and photonics. Ed. Rahman F, editor. World Publication Co. Pte. Ltd, 2005. 312 p.

    Google Scholar 

  64. Dennis MR. Rows of optical vortices from elliptically perturbing a high-order beam. Opt Lett. 2006:31(9):1325–1327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Izmailov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Izmailov, I., Poizner, B., Romanov, I., Smolskiy, S. (2016). Optical Vortices in Ring and Non-ring Interferometers and a Model of the Digital Communication System. In: Cryptology Transmitted Message Protection. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30125-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30125-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30123-5

  • Online ISBN: 978-3-319-30125-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics