Skip to main content

Abstract

In the previous chapter, it was highlighted that human-like motion will be beneficial for the integration humanoid robots into real-world scenarios. This chapter focuses on human motion, in particular, reaching motion, which is the general goal of the control approaches pursued in this book. Such motion is largely consistent across the healthy population, in a large part, due to the structural constraints of human physiology. In this chapter, we review literature related to the understanding of human motion and the handling of redundancies, which are of particular interest in robotic arm control. A variety of approaches to understanding such motion will be considered in addition to methods of recording human motion and scaling that motion to artificial agents, which typically lack the full complexity of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain: J Neurol 105(Pt 2):331

    Article  Google Scholar 

  • Adams B (2001) Learning humanoid arm gestures. In: Working notes – AAAI spring symposium series: learning grounded representations, Stanford

    Google Scholar 

  • Alexander R (1997) A minimum energy cost hypothesis for human arm trajectories. Biol Cybern 76(2):97–105

    Article  MATH  Google Scholar 

  • Argall B, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483

    Article  Google Scholar 

  • Ascenion (2015) Trakstar @ONLINE. http://www.ascension-tech.com/products/. Accessed 05 Sept 15

  • Atkeson C (1989) Learning arm kinematics and dynamics. Ann Rev Neurosci 12(1):157–183

    Article  Google Scholar 

  • Atkeson C, Hollerbach J (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5(9):2318

    Google Scholar 

  • Atkeson C, Schaal S (1997) Robot learning from demonstration. In: 14th international conference on machine learning, Nashville, Citeseer, pp 12–20

    Google Scholar 

  • Bonnechere B, Jansen B, Salvia P, Bouzahouene H, Omelina L, Moiseev F, Sholukha V, Cornelis J, Rooze M, Jan SVS (2014) Validity and reliability of the kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture 39(1):593–598

    Article  Google Scholar 

  • Bray J (2015) Markerless based human motion capture: a survey @ONLINE. http://visicast.co.uk/members/move/Partners/Papers/MarkerlessSurvey.pdf

  • Bremner P, Leonards U (2015) Speech and gesture emphasis effects for robotic and human communicators: a direct comparison. In: Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction (HRI ‘15), pp 255–262. doi:10.1145/2696454.2696496

    Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95(1):49–90

    Article  Google Scholar 

  • Burdet E, Milner T (1998) Quantisation of human motions and learning of accurate movements. Biol Cybern 78(4):307–318

    Article  MATH  Google Scholar 

  • Burdet E, Tee K, Mareels I, Milner T, Chew C, Franklin D, Osu R, Kawato M (2006) Stability and motor adaptation in human arm movements. Biol Cybern 94(1):20–32

    Article  MATH  Google Scholar 

  • Ciocarlie M, Clanton S, Spalding M, Allen P (2008) Biomimetic grasp planning for cortical control of a robotic hand. 2008 IEEE/RSJ international conference on intelligent robots and systems, Nice, pp 2271–2276

    Google Scholar 

  • Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH (2013) Concurrent validity of the microsoft kinect for assessment of spatiotemporal gait variables. J Biomech 46(15):2722–2725

    Article  Google Scholar 

  • Cruse H (1986) Constraints for joint angle control of the human arm. Biol Cybern 54(2):125–132

    Article  Google Scholar 

  • Cruse H, Brüwer M (1987) The human arm as a redundant manipulator: the control of path and joint angles. Biol Cybern 57(1):137–144

    Article  Google Scholar 

  • De Sapio V, Warren J, Khatib O, Delp S (2005) Simulating the task-level control of human motion: a methodology and framework for implementation. V Comput 21(5):289–302

    Google Scholar 

  • De Sapio V, Warren J, Khatib O (2006) Predicting reaching postures using a kinematically constrained shoulder model. Adv Robot Kinemat 3:209–218

    Article  MATH  Google Scholar 

  • Delp S, Loan J (2000) A computational framework for simulating and analyzing human and animal movement. Comput Sci Eng 2(5):46–55. doi:10.1109/5992.877394

    Article  Google Scholar 

  • Delp S, Anderson F, Arnold A, Loan P, Habib A, John C, Guendelman E, Thelen D (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950

    Article  Google Scholar 

  • Demircan E, Sentis L, De Sapio V, Khatib O (2008) Human motion reconstruction by direct control of marker trajectories. In: Lenarcic J, Wenger P (eds) Advances in robot kinematics: analysis and design, Springer, Netherlands, pp 263–272

    Chapter  Google Scholar 

  • Demiris Y, Dearden A (2005) From motor babbling to hierarchical learning by imitation: a robot developmental pathway. In: Berthouze L, Kaplan F, Kozima H, Yano H, Konczak J, Metta G, Nadel J, Sandini G, Stojanov G, Balkenius C (eds) Proceedings of the fifth international workshop on epigenetic robotics: modeling cognitive development in robotic systems, Nara, vol 123. Lund University Cognitive Studies. ISBN:91-974741-4-2

    Google Scholar 

  • Desmurget M, Jordan M, Prablanc C, Jeannerod M (1997) Constrained and unconstrained movements involve different control strategies. J Neurophysiol 77(3):1644

    Google Scholar 

  • Feldman A (1974) Change of muscle length due to shift of the equilibrium point of the muscle-load system. Biofizika 19:534–538

    Google Scholar 

  • Fitts P, Peterson J (1964) Information capacity of discrete motor responses. J Exp Psychol 67(2):103–112

    Article  Google Scholar 

  • Flash T, Hogan N (1985) The co-ordination of arm movements: An experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    Google Scholar 

  • Fougner A, Scheme E, Chan AC, Englehart K, Stavdahl Ø (2011) Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng 19(6):644–651

    Article  Google Scholar 

  • Fung Y (1993) Biomechanics: mechanical properties of living tissue. Springer, New York

    Book  Google Scholar 

  • Gams A, Ude A (2009) Generalization of example movements with dynamic systems. In: Humanoids 2009. 9th IEEE-RAS international conference on humanoid robots, pp 28–33. doi:10.1109/ICHR.2009.5379607

    Google Scholar 

  • Gams A, Van den Kieboom J, Dzeladini F, Ude A, Ijspeert AJ (2015) Real-time full body motion imitation on the coman humanoid robot. Robotica 33(05):1049–1061

    Article  Google Scholar 

  • Georgopoulos A, Kalaska J, Massey J (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46(4):725

    Google Scholar 

  • Grebenstein M, van der Smagt P (2008) Antagonism for a highly anthropomorphic hand-arm system. Adv Robot 22(1):39–55

    Article  Google Scholar 

  • Hall S (2003) Basic biomechanics, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Hanneton S, Berthoz A, Droulez J, Slotine J (1997) Does the brain use sliding variables for the control of movements? Biol Cybern 77(6):381–393

    Article  MATH  Google Scholar 

  • Harris C (2009) Biomimetics of human movement: functional or aesthetic? Bioinspiration Biomim 4

    Google Scholar 

  • Hersch M, Billard A (2006) A model for imitating human reaching movements. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction. ACM, New York, p 342

    Google Scholar 

  • Hill A (1910) The possible effect of the aggregation of the molecules of hæmoglobin. J Physiol 40:4–7

    Google Scholar 

  • Howard M, Klanke S, Gienger M, Goerick C, Vijayakumar S (2009) A novel method for learning policies from constrained motion data. In: Proceedings of international conference on robotics and automation (ICRA), Kobe

    Google Scholar 

  • Ikeuchi K (2009) Dance and robotics. In: Digital human symposium, Tokyo

    Google Scholar 

  • Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7(2):162

    Google Scholar 

  • Kaliki RR, Davoodi R, Loeb GE (2013) Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task. IEEE Trans Biomed Eng 60(3):792–802

    Article  Google Scholar 

  • Kang T, He J, Tillery S (2005) Determining natural arm configuration along a reaching trajectory. Exp Brain Res 167(3):352–361

    Article  Google Scholar 

  • Kar A (2010) Skeletal tracking using microsoft kinect. Methodology 1:1–11

    Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  Google Scholar 

  • Khan S, Herrmann G, Pipe T, Melhuish C, Spiers A (2010) Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control. Int J Soc Robot 2(3):1–15

    Article  Google Scholar 

  • Khatib O, Sentis L, Park J, Warren J (2004) Whole body dynamic behaviour and control of human-like robots. Int J Humanoid Robot 1(1):29–43

    Article  Google Scholar 

  • Khatib O, Demircan E, De Sapio V, Sentis L, Besier T, Delp S (2009) Robotics-based synthesis of human motion. J Physiol-Paris 103(3–5):211–219

    Article  Google Scholar 

  • Kormushev P, Calinon S, Caldwell D (2010) Robot motor skill coordination with EM-based reinforcement learning. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, pp 3232–3237

    Google Scholar 

  • Kuo A (1995) An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42(1):87–101

    Article  Google Scholar 

  • Lackner J, Dizio P (1998) Gravitoinertial force background level affects adaptation to Coriolis force perturbations of reaching movements. J Neurophysiol 80(2):546

    Google Scholar 

  • Lacquaniti F, Soechting J (1982) Coordination of arm and wrist motion during a reaching task. J Neurosci 2(4):399–408

    Google Scholar 

  • Lacquaniti F, Soechting J, Terzuolo S (1986) Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience 17(2):313–324

    Article  Google Scholar 

  • Lallée S, Pattacini U, Lemaignan S, Lenz A, Melhuish C, Natale L, Skachek S, Hamann K, Steinwender J, Sisbot EA et al (2012) Towards a platform-independent cooperative human robot interaction system: III. An architecture for learning and executing actions and shared plans. IEEE Trans Auton Mental Dev 4(3):239–253

    Article  Google Scholar 

  • Lee J, Chai J, Reitsma P, Hodgins J, Pollard N (2002) Interactive control of avatars animated with human motion data. ACM Trans Graph 21(3):491–500

    Google Scholar 

  • Lee S, Kim J, Park F, Kim M, Bobrow J (2005) Newton-type algorithms for dynamics-based robot movement optimization. IEEE Trans Robot 21(4):657–667

    Article  Google Scholar 

  • Liarokapis MV, Artemiadis PK, Kyriakopoulos KJ (2013) Mapping human to robot motion with functional anthropomorphism for teleoperation and telemanipulation with robot arm hand systems. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), Tokyo. IEEE, Piscataway, pp 2075–2075

    Chapter  Google Scholar 

  • Luo R, Shih BH, Lin TW (2013) Real time human motion imitation of anthropomorphic dual arm robot based on cartesian impedance control. In: 2013 IEEE international symposium on robotic and sensors environments (ROSE), pp 25–30. doi:10.1109/ROSE.2013.6698413

    Google Scholar 

  • Luo Z, Svinin M, Ohta K, Odashima T, Hosoe S (2004) On optimality of human arm movements. In: IEEE international conference on robotics and biomimetics (ROBIO 2004), Shenyang, 22–26 Aug 2004. IEEE, Piscataway, pp 256–261

    Google Scholar 

  • Maus HM, Revzen S, Guckenheimer J, Ludwig C, Reger J, Seyfarth A (2015) Constructing predictive models of human running 12(103). doi:10.1098/rsif.2014.0899

    Google Scholar 

  • Mell AG, Childress BL, Hughes RE (2005a) The effect of wearing a wrist splint on shoulder kinematics during object manipulation. Arch Phys Med Rehabil 86(8):1661–1664

    Google Scholar 

  • Mell AG, Childress BL, Hughes RE (2005b) The effect of wearing a wrist splint on shoulder kinematics during object manipulation. Arch Phys Med Rehabil 86(8):1661–4. doi:10.1016/j.apmr.2005.02.008. http://www.ncbi.nlm.nih.gov/pubmed/16084823

    Google Scholar 

  • Mellinger D, Michael N, Kumar V (2012) Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int J Robot Res. doi:10.1177/0278364911434236

    Google Scholar 

  • Meltzoff A, Moore M (1997) Explaining facial imitation: A theoretical model. Early Dev Parent 6(3–4):179–192

    Article  Google Scholar 

  • Menache A (2000) Understanding motion capture for computer animation and video games. Morgan Kaufmann, San Diego

    Google Scholar 

  • Metcalf CD, Robinson R, Malpass AJ, Bogle TP, Dell T, Harris C, Demain SH et al (2013) Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation. IEEE Trans Biomed Eng 60(8):2184–2192

    Article  Google Scholar 

  • Meyer D, Abrams R, Kornblum S, Wright C, Smith J (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 5:340–370

    Article  Google Scholar 

  • Mistry M, Mohajerian P, Schaal S (2005) Arm experiments with joint space force fields using an exoskeleton robot. In: Proceedings of the 9th international conference of rehabilitation robotics, Chicago, p 408

    Google Scholar 

  • Mitrovic D, Klanke S, Vijayakumar S (2010) Adaptive optimal feedback control with learned internal dynamics models. In: Sigaud O, Peters J (eds) From motor learning to interaction learning in robots. Studies in Computational Intelligence. Springer, Berlin/Heidelberg, pp 65–84

    Chapter  Google Scholar 

  • Montagnani F, Controzzi M, Cipriani C (2015) Is it finger or wrist dexterity that is missing in current hand prostheses? IEEE Trans Neural Syst Rehabil Eng 23(4):600–609. doi:10.1109/TNSRE.2015.2398112

    Article  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42(2):223–227

    Article  Google Scholar 

  • Mussa-Ivaldi F, Patton J (2000) Robots can teach people how to move their arm. In: Proceedings of IEEE international conference on robotics & automation 2000, San Francisco, vol 1. IEEE, Piscataway, pp 300–305

    Google Scholar 

  • Muybridge E (1881) The attitudes of animals in motion: a series of photographs illustrating the consecutive positions assumed by animals in performing various movements. CAU, San Francisco

    Google Scholar 

  • Muybridge E (1883) The attitudes of animals in motion. J Frankl Inst 115(4):260–274

    Article  Google Scholar 

  • Nakanishi J, Cory R, Mistry M, Peters J, Schaal S (2008) Operational space control: a theoretical and empirical comparison. Int J Robot Res 27(6):737–757

    Article  Google Scholar 

  • Nakaoka S, Nakazawa A, Kanehiro F, Kaneko K, Morisawa M, Hirukawa H, Ikeuchi K (2007) Learning from observation paradigm: leg task models for enabling a biped humanoid robot to imitate human dances. Int J Robot Res 26(8):829

    Article  Google Scholar 

  • Nakazawa A, Nakaoka S, Ikeuchi K, Yokoi K (2002) Imitating human dance motions through motion structure analysis. In: IEEE/RSJ International Conference on Intelligent Robots and System 2002, Lausanne, vol 3

    Google Scholar 

  • Park G, Ra S, Kim C, Song J (2008) Imitation learning of robot movement using evolutionary algorithm. In: Proceedings of the 17th IFAC work congress, Seoul, vol 17, part 1

    Google Scholar 

  • Pastor P, Hoffmann H, Asfour T, Schaal S (2009) Learning and generalization of motor skills by learning from demonstration. In: IEEE international conference on robotics and automation 2009 (ICRA’09), Kobe. IEEE, Piscataway, pp 763–768

    Chapter  Google Scholar 

  • Patton J, Kovic M, Mussa-Ivaldi F (2006) Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev 43(5):643

    Article  Google Scholar 

  • Peters J, Schaal S (2008) Learning to control in operational space. Int J Robot Res 27(2):197

    Article  Google Scholar 

  • Pollard N, Hodgins J, Riley M, Atkeson C (2002) Adapting human motion for the control of a humanoid robot. In: Proceedings of the 2002 IEEE international conference on robotics and automation, Washington, DC

    Google Scholar 

  • Pontryagin L (1962) The mathematical theory of optimal processes. Interscience, New York

    MATH  Google Scholar 

  • Ramos OE, Mansard N, Stasse O, Benazeth C, Hak S, Saab L (2015) Dancing humanoid robots: systematic use of OSID to compute dynamically consistent movements following a motion capture pattern. IEEE Robot Autom Mag 22(4):16–26. doi:10.1109/MRA.2015.2415048. IEEE Journals & Magazines

    Google Scholar 

  • Rengifo C, Plestan F, Aoustin Y (2008) Optimal control of a neuromusculoskeletal model: a second order sliding mode solution. In: International workshop on variable structure systems, Antalya, pp 55–60

    Google Scholar 

  • Roach NT, Venkadesan M, Rainbow MJ, Lieberman DE (2013) Elastic energy storage in the shoulder and the evolution of high-speed throwing in homo. Nature 498(7455):483–486

    Article  Google Scholar 

  • Ruchanurucks M (2015) Humanoid robot upper body motion generation using b-spline-based functions. Robotica 33(04):705–720

    Article  Google Scholar 

  • Ryu J, Iii WPC, Askew LJ, An Kn, Chao EYS (1991) Functional ranges of motion of the wrist joint. J Hand Surg 16:409–419

    Article  Google Scholar 

  • Saegusa R, Metta G, Sandini G, Sakka S (2008) Active motor babbling for sensory-motor learning. In: 2008 IEEE international conference on robotics and biomimetics (ROBIO2008), Bangkok, 14–17 Dec

    Google Scholar 

  • Safonova A, Pollard N, Hodgins J (2003) Optimizing human motion for the control of a humanoid robot. In: Proceedings of applied mathematics and applications of mathematics, Nice, pp 155–165

    Google Scholar 

  • Schaal S (2006) Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. In: Kimura H, Tsuchiya K, Ishiguro A, Witte H (eds) Adaptive motion of animals and machines. Springer, Tokyo, pp 261–280

    Chapter  Google Scholar 

  • Schaal S, Schweighofer N (2005) Computational motor control in humans and robots. Curr Opin Neurobiol 15:675–682

    Article  Google Scholar 

  • Schaal S, Ijspeert A, Billard A (2003) Computational approaches to motor learning by imitation. Philos Trans R Soc of Lond B 358(1431):537–547

    Article  Google Scholar 

  • Sentis L, Khatib O (2005) Synthesis of whole body behaviors through hierarchical control of behavioural primitives. Int J Humanoid Robot 2(4):505–518

    Article  Google Scholar 

  • Sholukha V, Bonnechere B, Salvia P, Moiseev F, Rooze M, Jan SVS (2013) Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems. J Biomech 46(14):2363–2371

    Article  Google Scholar 

  • Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Slotine J, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Soechting J, Flanders M (1998) Movement planning: kinematics, dynamics, both or neither. In: Harris LR, Jenkin M (eds) Vision and action. Cambridge University, Cambridge, pp 352–371

    Google Scholar 

  • Sundaresan A, Chellappa R (2005) Markerless motion capture using multiple cameras. In: Computer vision for interactive and intelligent environment 2005, pp 15–26. doi:10.1109/CVIIE.2005.13

    Google Scholar 

  • Systems C (2015) Cyberglove. http://www.cyberglovesystems.com/

  • Takamatsu J, Ogawara K, Kimura H, Ikeuchi K (2007) Recognizing assembly tasks through human demonstration. Int J Robot Res 26(7):641–659

    Article  Google Scholar 

  • Teachasrisaksakul K, Zhang Z, Yang GZ, Lo B (2015) Imitation of dynamic walking with BSN for humanoid robot. IEEE J Biomed Health Inform 19(3):794–802

    Google Scholar 

  • Tee K, Franklin D, Kawato M, Milner T, Burdet E (2010) Concurrent adaptation of force and impedance in the redundant muscle system. Biol Cybern 102(1):31–44

    Article  MATH  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915

    Article  Google Scholar 

  • Todorov E, Jordan M (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235

    Article  Google Scholar 

  • Trew M, Everett T (2001) Human movement: an introductory text. Elsevier Health Sciences, Edinburgh/New York

    Google Scholar 

  • Ude A, Man C, Riley M, Atkeson C (2000) Automatic generation of kinematic models for the conversion of human motion capture data into humanoid robot motion. In: Proceedings of the first IEEE-RAS conference on humanoid robotics (Humanoids 2000), Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Uno Y, Kwato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Biol Cybern 26:109–124

    Google Scholar 

  • Vicon (2015) Vicon motion capture@ONLINE. http://www.vicon.com

  • Woodworth RS (1899) The accuracy of voluntary movements. Psychol Rev, Monogr 3:54–59

    Google Scholar 

  • XSens (2015) Xsens intertial motion capture @ONLINE. https://www.xsens.com/products/mti-10-series/

  • Yamane K, Kuffner J, Hodgins J (2004) Synthesizing animations of human manipulation tasks. ACM Trans Graph (TOG) 23(3):532–539

    Article  Google Scholar 

  • Zajac F (1989) Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

  • Zhou H, Hu H (2008) Human motion tracking for rehabilitationA survey. Biomed Signal Process Control 3(1):1–18. doi:10.1016/j.bspc.2007.09.001. http://linkinghub.elsevier.com/retrieve/pii/S1746809407000778

    Article  Google Scholar 

  • Zordan V, Van Der Horst N (2003) Mapping optical motion capture data to skeletal motion using a physical model. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, pp 245–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spiers, A., Khan, S.G., Herrmann, G. (2016). Human Motion. In: Biologically Inspired Control of Humanoid Robot Arms. Springer, Cham. https://doi.org/10.1007/978-3-319-30160-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30160-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30158-7

  • Online ISBN: 978-3-319-30160-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics