Skip to main content

Gravitational Search Algorithm Applied to the Cell Formation Problem

  • Chapter
  • First Online:
Nature-Inspired Computation in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 637))

Abstract

Group technology is a concept that emerged in the manufacturing field almost seventy years ago. Since then, group technology has been widely applied by means of a cellular manufacturing philosophy application called the cell formation problem. In this paper, we focus on adapting the discrete gravitational search algorithm to the cell formation problem. The mathematical model and the discrete gravitational search algorithm stages are detailed thereafter. To evaluate the algorithm’s performance, thirty-five tests were carried out on widely used benchmarks. The results obtained were satisfactory to confirm successful adaptation of the gravitational search algorithm. Indeed, the algorithm reached thirty best values of benchmarks obtained by previous algorithms. The algorithm also outperformed the best-known solution of one benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 23(4), 1001–1014 (2010)

    Article  Google Scholar 

  2. Burbidge, J.L.: The introduction of group technology. John Wiley & Sons, Incorporated, London (1975)

    Google Scholar 

  3. Chakraborty, P., et al.: On convergence of the multi-objective particle swarm optimizers. Inf. Sci. 181(8), 1411–1425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dagli, C., Huggahalli, R.: Machine-part family formation with the adaptive resonance theory paradigm. Int. J. Prod. Res. 33(4), 893–913 (1995)

    Article  MATH  Google Scholar 

  5. Dimopoulos, C., Zalzala, A.M.S.: Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons. IEEE Trans. Evol. Comput. 4(2), 93–113 (2000)

    Article  Google Scholar 

  6. Doraghinejad, M., et al.: Channel assignment in multi-radio wireless mesh networks using an improved gravitational search algorithm. J. Netw. Comput. Appl. 38, 163–171 (2014)

    Article  Google Scholar 

  7. Dowlatshahi, M.B., et al.: A discrete gravitational search algorithm for solving combinatorial optimization problems. Inf. Sci. 258, 94–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elbenani, B., et al.: Genetic algorithm and large neighbourhood search to solve the cell formation problem. Expert Syst. Appl. 39(3), 2408–2414 (2012)

    Article  Google Scholar 

  9. Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manage. 129(3), 10–25 (2003)

    Google Scholar 

  10. Farmer, J.D., et al.: The immune system, adaptation, and machine learning. Phys. D 2(1–3), 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  11. Goldengorin, B., et al.: The problem of cell formation: ideas and their applications. In: Cell Formation in Industrial Engineering. pp. 1–23. Springer, New York (2013)

    Google Scholar 

  12. Gonçalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell formation. Comput. Ind. Eng. 47(2–3), 247–273 (2004)

    Article  Google Scholar 

  13. Gravel, M., Nsakanda, A.L.: Efficient solutions to the cell-formation problem with multiple routings via a double-loop genetic algorithm. Eur. J. Oper. Res. 109(2), 286–298 (1998)

    Google Scholar 

  14. Holland, J.H.: Outline for a logical theory of adaptive systems. J. ACM 9(3), 297–314 (1962)

    Article  MATH  Google Scholar 

  15. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI, USA (1975)

    Google Scholar 

  16. James, T.L., et al.: A hybrid grouping genetic algorithm for the cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)

    Article  MATH  Google Scholar 

  17. Lei, D., Wu, Z.: Tabu search for multiple-criteria manufacturing cell design. Int. J. Adv. Manuf. Technol. 28(9–10), 950–956 (2006)

    Article  Google Scholar 

  18. Li, X., et al.: An ant colony optimization metaheuristic for machine-part cell formation problems. Comput. Oper. Res. 37(12), 2071–2081 (2010)

    Article  MATH  Google Scholar 

  19. Luo, J., Tang, L.: A hybrid approach of ordinal optimization and iterated local search for manufacturing cell formation. Int. J. Adv. Manuf. Technol. 40(3–4), 362–372 (2008)

    MathSciNet  Google Scholar 

  20. Mahdavi, I., et al.: Genetic algorithm approach for solving a cell formation problem in cellular manufacturing. Expert Syst. Appl. 36(3), 6598–6604 (2009)

    Article  Google Scholar 

  21. Mukattash, A.M., et al.: Heuristic approaches for part assignment in cell formation. Comput. Ind. Eng. 42(2–4), 329–341 (2002)

    Article  Google Scholar 

  22. Papaioannou, G., Wilson, J.M.: The evolution of cell formation problem methodologies based on recent studies (1997–2008): review and directions for future research. Eur. J. Oper. Res. 206(3), 509–521 (2010)

    Google Scholar 

  23. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  24. Rashedi, E., et al.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  25. Rezazadeh, H., et al.: Solving a dynamic virtual cell formation problem by linear programming embedded particle swarm optimization algorithm. Appl. Soft Comput. 11(3), 3160–3169 (2011)

    Article  Google Scholar 

  26. Shi, W., et al.: QSAR analysis of tyrosine kinase inhibitor using modified ant colony optimization and multiple linear regression. Eur. J. Med. Chem. 42(1), 81–86 (2007)

    Article  Google Scholar 

  27. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  28. Soleymanpour, M., et al.: A transiently chaotic neural network approach to the design of cellular manufacturing. Int. J. Prod. Res. 40(10), 2225–2244 (2002)

    Article  MATH  Google Scholar 

  29. Souilah, A.: Simulated annealing for manufacturing systems layout design. Eur. J. Oper. Res. 82(3), 592–614 (1995)

    Article  MATH  Google Scholar 

  30. Tian, H., et al.: Multi-objective optimization of short-term hydrothermal scheduling using non-dominated sorting gravitational search algorithm with chaotic mutation. Energy Convers. Manage. 81, 504–519 (2014)

    Article  Google Scholar 

  31. Tunnukij, T., Hicks, C.: An enhanced grouping genetic algorithm for solving the cell formation problem. Int. J. Prod. Res. 47(7), 1989–2007 (2009)

    Article  Google Scholar 

  32. Venkumar, P., Haq, A.N.: Complete and fractional cell formation using Kohonen self-organizing map networks in a cellular manufacturing system. Int. J. Prod. Res. 44(20), 4257–4271 (2006)

    Google Scholar 

  33. Yang, X.-S.: Harmony search as a metaheuristic algorithm. In: Geem, Z.W. (ed.) Music-Inspired Harmony Search Algorithm, pp. 1–14. Springer, Berlin (2009)

    Chapter  Google Scholar 

  34. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature & Biologically Inspired Computing, NaBIC 2009, Coimbatore, India. pp. 210–214, 9–11 Dec 2009

    Google Scholar 

  35. Zolfaghari, S.: An objective-guided ortho-synapse Hopfield network approach to machine grouping problems

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal Zettam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zettam, M., Elbenani, B. (2016). Gravitational Search Algorithm Applied to the Cell Formation Problem. In: Yang, XS. (eds) Nature-Inspired Computation in Engineering. Studies in Computational Intelligence, vol 637. Springer, Cham. https://doi.org/10.1007/978-3-319-30235-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30235-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30233-1

  • Online ISBN: 978-3-319-30235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics