Skip to main content

A Chaotic Hyperjerk System Based on Memristive Device

  • Chapter
  • First Online:
Advances and Applications in Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 636))

Abstract

From the mechanical system point of view, third-order derivatives of displacement or the time rate of change of acceleration is the jerk, while the fourth derivative has been known as a snap. As a result, a dynamical system which is presented by an nth order ordinary differential equation with \( n > 3 \) describing the time evolution of a single scalar variable is considered as a hyperjerk system. Hyperjerk system has received significant attention because of its elegant form. Motivated by reported attractive hyperjerk systems, a 4-D novel chaotic hyperjerk system has been introduced and studied in this work. Interestingly, this hyperjerk system displays an infinite number of equilibrium points because of the presence of a memristive device. In addition, an adaptive controller is proposed to achieve synchronization of such novel hyperjerk systems with two unknown parameters. In order to confirm the feasibility of the mathematical hyperjerk model, its electronic circuit is designed and implemented by using SPICE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Comm Math Phys 79:573–579

    Article  MathSciNet  MATH  Google Scholar 

  2. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design. Springer, New York

    Book  Google Scholar 

  3. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control. Springer, New York

    Book  Google Scholar 

  4. Bao B, Zou X, Liu Z, Hu F (2013) Generalized memory element and chaotic memory system. Int J Bif Chaos 23:1350135

    Article  MathSciNet  MATH  Google Scholar 

  5. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep 366:1–101

    Article  MathSciNet  MATH  Google Scholar 

  6. Buscarino A, Fortuna L, Frasca M (2009) Experimental robust synchronization of hyperchaotic circuits. Physica D 238:1917–1922

    Article  MATH  Google Scholar 

  7. Chen GR (1999) Controlling chaos and bifurcations in engineering systems. CRC Press, Boca Raton

    Google Scholar 

  8. Chen G, Yu X (2003) Chaos control: theory and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Chlouverakis KE, Sprott JC (2006) Chaotic hyperjerk systems. Chaos, Solitons Fractals 28:739–746

    Article  MathSciNet  MATH  Google Scholar 

  10. Chua LO (1971) Memristor–the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Google Scholar 

  11. Chua LO, Kang SM (1976) Memristive devices and system. Proc IEEE 64:209–223

    MathSciNet  Google Scholar 

  12. Elhadj Z, Sprott JC (2013) Transformation of 4-D dynamical systems to hyperjerk form. Palest J Maths 2:38–45

    MathSciNet  MATH  Google Scholar 

  13. Fortuna L, Frasca M (2007) Experimental synchronization of single-transistor-based chaotic circuits. Chaos 17:043118-1–5

    Article  MathSciNet  MATH  Google Scholar 

  14. Gamez-Guzman L, Cruz-Hernandez C, Lopez-Gutierrez R, Garcia-Guerrero EE (2009) Synchronization of chua’s circuits with multi-scroll attractors: application to communication. Commun Nonlinear Sci Numer Simul 14:2765–2775

    Article  Google Scholar 

  15. Jafari S, Sprott JC (2013) Simple chaotic flows with a line equilibrium. Chaos, Solitons Fractals 57:79–84

    Article  MathSciNet  Google Scholar 

  16. Jafari S, Sprott JC, Golpayegani SMRH (2013) Elementary quadratic chaotic flows with no equilibria. Phys Lett A 377:699–702

    Article  MathSciNet  Google Scholar 

  17. Kapitaniak T (1994) Synchronization of chaos using continuous control. Phys Rev E 50:1642–1644

    Google Scholar 

  18. Karthikeyan R, Vaidyanathan S (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65:97–103

    Google Scholar 

  19. Khalil H (2002) Nonlinear systems. Prentice Hall, New Jersey

    MATH  Google Scholar 

  20. Kingni ST, Jafari S, Simo H, Woafo P (2014) Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur Phys J Plus 129:76

    Article  Google Scholar 

  21. Lainscsek C, Lettellier C, Gorodnitsky I (2003) Global modeling of the rössler system from the z-variable. Phys Lett A 314:409–427

    Article  MathSciNet  MATH  Google Scholar 

  22. Leonov GA, Kuznetsov NV (2011) Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Dokl Math 84:475–481

    Article  MathSciNet  MATH  Google Scholar 

  23. Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems: from hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos 23:1330002

    Article  MathSciNet  MATH  Google Scholar 

  24. Leonov GA, Kuznetsov NV, Kuznetsova OA, Seldedzhi SM, Vagaitsev VI (2011) Hidden oscillations in dynamical systems. Trans Syst Contr 6:54–67

    Google Scholar 

  25. Leonov GA, Kuznetsov NV, Vagaitsev VI (2011) Localization of hidden Chua’s attractors. Phys Lett A 375:2230–2233

    Google Scholar 

  26. Leonov GA, Kuznetsov NV, Vagaitsev VI (2012) Hidden attractor in smooth Chua system. Physica D 241:1482–1486

    Article  MathSciNet  MATH  Google Scholar 

  27. Leonov GA, Kuznetsov NV, Kiseleva MA, Solovyeva EP, Zaretskiy AM (2014) Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn 77:277–288

    Article  Google Scholar 

  28. Linz SJ (1997) Nonlinear dynamical models and jerky motion. Am J Phys 65:523–526

    Article  Google Scholar 

  29. Linz SJ (2008) On hyperjerky systems. Chaos, Solitons Fractals 37:741–747

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu C, Yi J, Xi X, An L, Fu Y (2012) Research on the multi-scroll chaos generation based on Jerk mode. Procedia Eng 29:957–961

    Article  Google Scholar 

  31. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  32. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12:659–661

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma J, Wu X, Chu R, Zhang L (2014) Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn 76:1951–1962

    Article  Google Scholar 

  34. Molaei M, Jafari S, Sprott JC, Golpayegani S (2013) Simple chaotic flows with one stable equilibrium. Int J Bifurc Chaos 23:1350188

    Article  MathSciNet  MATH  Google Scholar 

  35. Munmuangsaen B, Srisuchinwong B, Sprott JC (2011) Generalization of the simplest autonomous chaotic system. Phys Lett A 375:1445–1450

    Article  MATH  Google Scholar 

  36. Pecora LM, Carroll TL (1990) Synchronization in chaotic signals. Phys Rev A 64:821–824

    MathSciNet  MATH  Google Scholar 

  37. Pehlivan I, Moroz I, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vibr 333:5077–5096

    Article  Google Scholar 

  38. Pershin YV, Fontaine SL, Ventra MD (2009) Memristive model of amoeba learning. Phys Rev E 80:021926

    Article  Google Scholar 

  39. Pham VT, Rahma F, Frasca M, Fortuna L (2014) Dynamics and synchronization of a novel hyperchaotic system without equilibrium. Int J Bifurc Chaos 24:1450087

    Article  MathSciNet  MATH  Google Scholar 

  40. Pham V-T, Volos C, Jafari S, Wang X, Vaidyanathan S (2014) Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv Mater Rapid Comm 8:1157–1163

    Google Scholar 

  41. Pham VT, Volos CK, Jafari S, Wei Z, Wang X (2014) Constructing a novel no-equilibrium chaotic system. Int J Bifurc Chaos 24:1450073

    Google Scholar 

  42. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398

    Article  Google Scholar 

  43. Sastry S (1999) Nonlinear systems: analysis, stability, and control. Springer, USA

    Book  MATH  Google Scholar 

  44. Schot S (1978) Jerk: the time rate of change of acceleration. Am J Phys 46:1090–1094

    Article  Google Scholar 

  45. Sprott JC (1997) Some simple chaotic jerk functions. Am J Phys 65:537–543

    Article  Google Scholar 

  46. Sprott JC (2003) Chaos and times-series analysis. Oxford University Press, Oxford

    MATH  Google Scholar 

  47. Sprott JC (2010) Elegant chaos: algebraically simple chaotic flows. World Scientific, Singapore

    Google Scholar 

  48. Sprott JC (2011) A new chaotic jerk circuit. IEEE Trans Circuits Syst-II: Exp Briefs 58:240–243

    Article  Google Scholar 

  49. Srinivasan K, Senthilkumar DV, Murali K, Lakshmanan M, Kurths J (2011) Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Chaos 21:023119

    Article  MATH  Google Scholar 

  50. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, Massachusetts

    Google Scholar 

  51. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  52. Sun KH, Sprott JC (2009) A simple jerk system with piecewise exponential nonlinearity. Int J Nonlinear Sci Num Simu 10:1443–1450

    Google Scholar 

  53. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comp Model 55:1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  54. Tetzlaff R (2014) Memristor and memristive systems. Springer, New York

    Book  Google Scholar 

  55. Tour JM, He T (2008) The fourth element. Nature 453:42–43

    Article  Google Scholar 

  56. Vaidyanathan S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Auto Compt 9:274–279

    Article  Google Scholar 

  57. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlineariry. Far East J Math Sci 79:135–143

    MATH  Google Scholar 

  58. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term novel 3-D chaotic system with three quadratic nonlinearities. Eur Phys J Spec Topics 223:1519–1529

    Article  Google Scholar 

  59. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowo BA (2014) Adaptive backstepping control, synchronization and circuit simualtion of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Cont Sci 33:257–285

    MATH  Google Scholar 

  60. Vaidyanathan S, Volos C, Pham VT (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Arch Cont Sci 25:257–285

    Google Scholar 

  61. Volos CK, Kyprianidis IM, Stouboulos IN (2011) Various synchronization phenomena in bidirectionally coupled double scroll circuits. Commun Nonlinear Sci Numer Simul 71:3356–3366

    Article  MathSciNet  Google Scholar 

  62. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Signal Process 93:1328–1340

    Article  Google Scholar 

  63. Wang X, Chen G (2012) A chaotic system with only one stable equilibrium. Commun Nonlinear Sci Numer Simul 17:1264–1272

    Article  MathSciNet  Google Scholar 

  64. Wang X, Chen G (2013) Constructing a chaotic system with any number of equilibria. Nonlinear Dyn 71:429–436

    Article  MathSciNet  Google Scholar 

  65. Yalcin M (2007) Multi-scroll and hypercube attractors from a general Jerk circuit using Josephson junctions. Chaos, Solitons Fractals 34:1659–1666

    Article  MathSciNet  Google Scholar 

  66. Yalcin ME, Suykens JAK, Vandewalle J (2005) Cellular Neural Networks Multi-Scroll Chaos and Synchronization. World Scientific, Singapore

    MATH  Google Scholar 

  67. Yu S, Lü J, Leung H, Chen G (2005) Design and implementation of n-scroll chaotic attractors from a general Jerk circuit. IEEE Trans Circ Syst I 52:1459–1476

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.99–2013.06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pham, VT., Vaidyanathan, S., Volos, C.K., Jafari, S., Wang, X. (2016). A Chaotic Hyperjerk System Based on Memristive Device. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Chaotic Systems . Studies in Computational Intelligence, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-30279-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30279-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30278-2

  • Online ISBN: 978-3-319-30279-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics