Skip to main content

Low-Melting Ionic Salts

  • Chapter
  • First Online:
Ionic Liquid Properties

Abstract

Low-melting salts, i.e., those melting between 100 and 250 °C but are highly ionic are dealt with here. These include many inorganic salts as well as symmetrical quaternary ammonium and phosphonium salts, the properties of which as liquids are tabulated and discussed. Salt hydrates, whether melting congruently or not, form another category of low-melting salts, the properties of which are dealt with here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohandas KS, Sanil N, Rodriguez P (2006) Development of a high temperature conductance cell and electrical conductivity measurements of MAlCl4 (M = Li, Na and K) melts. Transactions of the Institutions of Mining and Metallurgy, Section C. Mineral Proc Extract Metall 115:25–30

    Article  CAS  Google Scholar 

  2. Moriya K, Matsuo T, Suga H (1988) Thermodynamic properties of alkali and thallium nitrites: the ionic plastically crystalline state. Thermochim Acta 132:133–140

    Article  CAS  Google Scholar 

  3. Campbell AN, Nagarajan MK (1964) The thermodynamics and conductances of molten salts and their mixtures. II. The viscosities, heats of fusion, and heat capacities of lithium chlorate and lithium chlorate-lithium nitrate mixtures. Can J Chem 42:1616–1626

    Article  CAS  Google Scholar 

  4. Brooker MH, Shapter JG, Drover K (1990) Raman study of sodium chlorate as a function of temperature into the melt and the novel high temperature phase. J Phys Condens Matter 2:2259–2272

    Article  CAS  Google Scholar 

  5. Leonesi D, Piantoni G, Berchiesi G, Franzosini P (1968) Thermodynamic properties of organic acid salts. III. Enthalpy and entropy of fusion of sodium and potassium formats. Ric Sci 38:702–705

    CAS  Google Scholar 

  6. Hatem G, Eriksen KM, Gaune-Escard M, Fehmann R (2002) SO2 oxidation catalyst model systems characterized by thermal methods. Top Catal 19:323–330

    Article  CAS  Google Scholar 

  7. Masuda Y, Morita W, Wang X, Yukawa Y (2000) Comparative study on the thermal phase transitions of rubidium and cesium formats. Thermochim Acta 152–153:61–67

    Article  Google Scholar 

  8. Rolla M, Franzosini P, Riccardi R (1961) Cryoscopy of dilute solutions in fused thallous nitrate. Disc Faraday Soc 32:84–89

    Article  CAS  Google Scholar 

  9. Domalski ES, Hearing ED (1990) Heat capacities and entropies of organic compounds in the condensed phase. Volume II. J Phys Chem Ref Data 19:881–902

    Article  CAS  Google Scholar 

  10. Fukushima K, Murofushi M, Oki M, Igarashi K, Mochinaga J, Iwadate Y (1994) Intraionic structure of HSO4- and alkali cation configuration in molten NaHSO4 and KHSO4. Z Naturforsch A 49:785–789

    Article  CAS  Google Scholar 

  11. Popovskaya NP, Protsenko PI, Eliseeva AF (1968) Surface tension of some univalent metal nitrite and nitrate melts. Russ J Inorg Chem 13:498–501

    Google Scholar 

  12. Dutcher CS, Wexler AS, Clegg SL (2010) Surface tensions of inorganic multicom-ponent aqueous electrolyte solutions and melts. J Phys Chem A 114:12216–12230

    Article  CAS  Google Scholar 

  13. Leonesi D, Berchiesi G, Cingolani A (1975) Electric conductivity in molten binaries of alkali formates and acetates. J Chem Eng Data 20:31–32

    Article  CAS  Google Scholar 

  14. Wang S-CS, Bennion DN (1983) The electrochemistry of molten lithium chlorate and its possible use with lithium in a battery. J Electrochem Soc 130:741–747

    Article  CAS  Google Scholar 

  15. Janz GJ, Dampier FW, Lakshminarayanan GR, Lorenz PK, Tomkins RPT (1968) Molten salts. I. Electrical conductance, density, and viscosity. NSRDS-NBS Rep 15:1–143

    Google Scholar 

  16. Coker TG, Ambrose J, Janz GJ (1970) Fusion properties of some ionic quaternary ammonium compounds. J Am Chem Soc 92:5293–5297

    Article  CAS  Google Scholar 

  17. Barton AFM, Spedy RJ (1974) Simultaneous conductance and volume measurements on molten salts at high pressure. J Chem Soc Faraday Trans 1(70):506–527 (the density data at 1MPa)

    Article  Google Scholar 

  18. Gordon JE, SubbaRao GN (1978) Fused organic salts. 8. Properties of molten straight-chain isomers of tetra-n-pentylammonium salts. J Am Chem Soc 100:7445–7452 (the surface tension at Tm is 14.91 N m–1)

    Article  CAS  Google Scholar 

  19. Lampreia MI, Barreira F (1976) Transport properties of molten tetra-alkylammonium picrates. I. Viscosity. Electrochim Acta 21:485–489

    Article  CAS  Google Scholar 

  20. Griffiths TR (1963) Densities of some molten organic quaternary halides. J Chem Eng Data 8:568–569

    Article  CAS  Google Scholar 

  21. Sugden S, Wilkins H (1929) Parachor and chemical constitution. XII. Fused metals and salts. J Chem Soc:1291–1298

    Google Scholar 

  22. Herstedt M, Henderson WA, Smirnov M, Ducasse L, Servant L, Talaga D, Lassegues JC (2006) Conformational isomerism and phase transitions in tetraethylammonium bis(trifluoromethanesulfonyl)imide Et4NTFSI. J Mol Struct 783:145–156 [NTF2– = (CF3SO2)2N–]

    Article  CAS  Google Scholar 

  23. Hoff RH, Hengge AC (1998) A facile high-yield synthesis and purification of tetrabutylammonium tetrabutylborate. J Org Chem 63:195

    Article  CAS  Google Scholar 

  24. Furton KG, Poole CF (1987) Thermodynamic characteristics of solute-solvent interactions in liquid organic salt solvents, studied by gas chromatography. J Chromatogr 399:47–67

    Article  CAS  Google Scholar 

  25. Morrison G, Lind JE Jr (1968) Effect of the internal Coulomb field on the viscosity of a fused salt. J Chem Phys 49:5310–5314

    Article  CAS  Google Scholar 

  26. Barreira ML, Barreira F (1976) Transport properties of molten tetra-alkylammonium picrates. II. Conductivity. Electrochim Acta 21:491–495

    Article  CAS  Google Scholar 

  27. Kumar A (1993) Surface tension, viscosity, vapor pressure, density, and sound velocity for a system miscible continuously from a pure fused electrolyte to a nonaqueous liquid with a low dielectric constant: anisole with tetra-n-butyl-ammonium picrate. J Am Chem Soc 115:9243–9248

    Article  CAS  Google Scholar 

  28. Carvalho PJ, Ventura SPM, Batista MLS, Schröder B, Goncalves F, Esperanca J, Mutelet F, Coutinho (2014) Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs. ammonium cations. J Chem Phys 140:064505/1–11

    Article  CAS  Google Scholar 

  29. Zabinska G, Perloni P, Sanesi M (1987) On the thermal behavior of some tetraalkyl-ammonium tetrafluoroborates. Thermochim Acta 122:87–94

    Article  CAS  Google Scholar 

  30. Gordon JE (1965) Fused organic salts. IV. Characterization of low-melting quaternary ammonium salts. Phase equilibrium for salt-salt and salt-nonelectrolyte systems. Properties of the liquid salt medium. J Am Chem Soc 87:4347–4358

    Article  CAS  Google Scholar 

  31. Matsumoto K, Harinaga U, Tanaka R, Koyama A, Hagiwara R, Tsunashima K (2014) The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (Nn(+) = tetraalkylammonium and Pn(+) = tetraalkylphosphonium). Phys Chem Chem Phys 16:23616–23626

    Article  CAS  Google Scholar 

  32. Pomaville RM, Poole SK, Davis LJ, Poole CF (1988) Solute-solvent interactions in tetra-n-butylphosphonium salts studied by gas chromatography. J Chromatogr A 438:1–14

    Article  CAS  Google Scholar 

  33. Neves CMSS, Rodriguez AR, Kurina KA, Esperança JMSS, Freire MG, Coutinho JAP (2013) Solubility of non-aromatic hexafluorophosphate-based salts and ionic liquids in water determined by electrical conductivity. Fluid Phase Equilib 358:50–55

    Article  CAS  Google Scholar 

  34. Nakayama H, Kuwata H, Yamamoto N, Akagi Y, Matsui H (1989) Solubilities and dissolution states of a series of symmetrical tetraalkylammonium salts in water. Bull Chem Soc Jpn 62:985–992

    Article  CAS  Google Scholar 

  35. Lind JE Jr, Abdel-Rehim HAA, Rudich SW (1966) Structure of organic melts. J Phys Chem 70:3610–3619

    Article  CAS  Google Scholar 

  36. Verevkin SP, Emel’yanko VN, Krossing I, Kalb R (2012) Thermochemistry of ammonium based ionic liquids: tetra-alkyl ammonium nitrates – experiments and computations. J Chem Thermodyn 51:107–113

    Article  CAS  Google Scholar 

  37. Coddens ME, Furton KG, Poole CF (1886) Synthesis and gas chromatographic stationary phase properties of alkylammonium thiocyanates. J Chromatogr 356:59–77

    Article  Google Scholar 

  38. Matsumoto H., Kageyama H, Miyazaki Y (2002) Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chem Comm 1726–1727

    Google Scholar 

  39. Bhatt VD, Gohil K (2013) Ion exchange synthesis and thermal characteristics of some [N+2222]-based ionic liquids. Bull Mater Sci 36:1121–1125

    Article  CAS  Google Scholar 

  40. Bhatt VD, Gohil K (2013) Ion exchange synthesis and thermal characteristics of some [N+4444] based ionic liquids. Thermochim Acta 556:23–29

    Article  CAS  Google Scholar 

  41. Lide D (ed) (2001–2002) Handbook of Chemistry and Physics, 82nd edn. CRC Press, Baton Rouge

    Google Scholar 

  42. Janz GJ (1988) Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. J Phys Chem Ref Data 17(Suppl 2):1–325

    Google Scholar 

  43. Leonesi D, Cingolani A, Franzosini P (1973) Electric conductivity of sodium-potassium acetates molten system. J Chem Eng Data 18:391–393

    Article  CAS  Google Scholar 

  44. Protsenko AV, Protsenko PI (1964) Physical-chemical properties of the melt LiNO2-LiNO3. Izv Vyshch Zaved Ucebn Zaved Metall 7:35–38

    Google Scholar 

  45. Guion J, Sauzade JD, Laugt M (1983) Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim Acta 67:167–179

    Article  CAS  Google Scholar 

  46. Voigt W, Zheng D (2002) Solid-liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials. Pure Appl Chem 74:1909–1920

    Article  CAS  Google Scholar 

  47. Levitskij EA, Aristov YI, Tokarev MM, Parmon VN (1996) “Chemical Heat Accumulators”: a new approach to accumulating low potential heat. Sol Energy Solar Cells 44:219–235

    Article  CAS  Google Scholar 

  48. Meisingset KK, Grønvold F (1986) Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. IV. Calcium chloride hexahydrate, calcium chloride tetrahydrate, calcium chloride dihydrate, and iron chloride (FeCl3) hexahydrate. J Chem Thermodyn 18:159–173

    Article  CAS  Google Scholar 

  49. Yinping Z, Yi J, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas Sci Technol 10:201–205

    Article  CAS  Google Scholar 

  50. Günther E, Mehling H, Werner M (2007) Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J Phys D Appl Phys 40:4636–4641

    Article  Google Scholar 

  51. Sandnes B, Rekstad J (2006) Supercooling salt hydrates: stored enthalpy as a function of temperature. Sol Energy 80:616–625

    Article  CAS  Google Scholar 

  52. Gawron K, Schröder J (1977) Properties of some salt hydrates for latent heat storage. Energy Res 1:351–363

    Article  CAS  Google Scholar 

  53. Grønvold F, Meisingset KK (1983) Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. II. Sodium carbonate monohydrate and sodium carbonate decahydrate. J Chem Thermodyn 15:881–889

    Article  Google Scholar 

  54. Pilar R, Svoboda L, Honcova P, Oravova L (2012) Study of magnesium chloride hexahydrate as heat storage material. Thermochim Acta 546:81–86

    Article  CAS  Google Scholar 

  55. Grønvold F, Meisingset KK (1982) Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. I. Ammonium aluminum sulfate, potassium aluminum sulfate, aluminum sulfate, zinc sulfate, sodium sulfate, and sodium thiosulfate hydrates. J Chem Thermodyn 14:1083–1098

    Article  Google Scholar 

  56. Jain SK (1978) Density, viscosity, and surface tension of some single molten hydrated salts. J Chem Eng Data 23:170–173

    Article  CAS  Google Scholar 

  57. Jain SK, Prashar S, Jain SK (1999) Physical properties of some molten hydrated calcium salts. Indian J Chem 38A:778–782

    CAS  Google Scholar 

  58. Duffy JA, Ingram MD (1977) Metal aquo ions in molten salt hydrates. A new class of mineral acid? Inorg Chem 16:2988

    Article  CAS  Google Scholar 

  59. Angell CA (1965) A new class of molten salt mixtures. The hydrated dipositive ion as an independent cation species. J Electrochem Soc 112:1224–1227

    Article  Google Scholar 

  60. Marcus Y (2015) Volumetric behavior of molten salts and molten salt hydrates. In: Wilhelm E, Letcher T (eds) Volume properties. Royal Society for Chemistry, Cambridge, Ch. 20, pp 526–541

    Google Scholar 

  61. Feilchenfeld H, Fuchs J, Sarig S (1985) The melting point adjustment of calcium chloride hexahydrate by addition of potassium chloride or calcium bromide hexahydrate. Sol Energy 34:199–201

    Article  CAS  Google Scholar 

  62. Mashovets VP, Baron NM, Zavodnaya GE (1969) Density of congruently melting crystal hydrates in solid and molten states. Russ J Phys Chem 43:971–974

    Google Scholar 

  63. Sharma SK, Jotshi CK, Singh A (1987) Density of molten salt hydrates – experimental data and an empirical correlation. Can J Chem Eng 65:171–174

    Article  CAS  Google Scholar 

  64. Bhattacharjee C, Ismail S, Ismail K (1986) Density and viscosity of sodium thiosulfate pentahydrate (Na2S2O3·5H2O) + potassium nitrate melt. J Chem Eng Data 31:117–118

    Article  CAS  Google Scholar 

  65. Novotny P, Söhnel O (1988) Densities of binary aqueous solutions of 306 inorganic substances. J Chem Eng Data 33:49–55

    Article  CAS  Google Scholar 

  66. Jain SK (1977) Volumetric properties of some single molten hydrated salts. J Chem Eng Data 22:383–385

    Article  CAS  Google Scholar 

  67. Minevich A, Marcus Y, Ben-Dor L (2004) Densities of solid and molten salt hydrates and their mixtures and viscosities of some of them. J Chem Eng Data 49:1451–1455

    Article  CAS  Google Scholar 

  68. Scatchard G (1926) International critical tables of numerical data, physics, chemistry and technology, 3rd edn. McGraw-Hill, New York, p 73

    Google Scholar 

  69. Jain SK (1973) Density and partial equivalent volumes of hydrated melts. Tetrahydrates of calcium nitrate, cadmium nitrate, and their mixtures with lithium, sodium, and potassium nitrate. J Chem Eng Data 18:397–399

    Article  CAS  Google Scholar 

  70. Ramana KV, Sharma RC, Gaur HC (1986) Volumetric properties of molten hydrated salts. 7. Mixtures of ferric nitrate nonahydrate with hydrates of calcium, cadmium, zinc, and magnesium nitrates. J Chem Eng Data 31:288–291

    Article  CAS  Google Scholar 

  71. Ornek D, Gurkan T, Oztin C (1998) Physical and chemical properties of a highly viscous aluminum sulfate melt. Ind Eng Chem Res 37:2687–2690

    Article  CAS  Google Scholar 

  72. Jain SK (1978) Refractive index of molten Lewis acid salt hydrates: mixtures of chromium(III) nitrate nonahydrate + calcium nitrate tetrahydrate. J Chem Eng Data 23:216–218

    Article  CAS  Google Scholar 

  73. Gupta S, Sharma RC, Gaur HC (1981) Volumetric properties of molten hydrated salts. 5. Fe(NO3)3·8.75H2O + MNO3 system. J Chem Eng Data 26:187–191

    Article  CAS  Google Scholar 

  74. Mukerjee P (1961) Ion-solvent interactions. I. Partial molal volumes of ions in aqueous solutions. II. Internal pressure and electrostriction of aqueous solutions of electrolytes. J Phys Chem 65:740–744

    Article  CAS  Google Scholar 

  75. Marcus Y (2012) The standard partial molar volumes of ions in solution. Part 5. Ionic volumes in water at 125 to 200°C. J Phys Chem B 116:7232–7239

    Article  CAS  Google Scholar 

  76. Marcus Y (2013) Volumetric properties of molten salt hydrates. J Chem Eng Data 58:488–491

    Article  CAS  Google Scholar 

  77. Sharma SK, Jotshi CK, Singh A (1984) Viscosity of molten sodium salt hydrates. J Chem Eng Data 29:245–246

    Article  CAS  Google Scholar 

  78. Pickston L, Smedley SI, Wooddall G (1977) The compressibility and electrical conductivity of concentrated aqueous calcium nitrate solutions to 6 kbar and 150 °C. J Phys Chem 81:581–585

    Article  CAS  Google Scholar 

  79. Millero FJ, Vinokurova F, Fernandez M, Hershey JP (1987) PVT properties of concentrated electrolytes. VI. The speed of sound and apparent molal compressibilities of sodium chloride, disodium sulfate, magnesium chloride and magnesium sulfate solutions from 0 to 100 °C. J Solut Chem 16:269–281

    Article  CAS  Google Scholar 

  80. Okazaki N (2000) Temperature rule for the speed of sound in water: a chemical kinetics model. Chem Eur J 6:3339–3345

    Article  CAS  Google Scholar 

  81. Deki S, Iwabuki H, Kajinami A, Kanaji Y (1993) Adiabatic compressibility of hydrated alkali-metal acetate melts. Proc Electrochem Soc 93:121–130

    Google Scholar 

  82. Sharma SK, Jotshi CK, Singh A (1984) An empirical correlation for viscosity of molten salt hydrates. Can J Chem Eng 62:431–433

    Article  CAS  Google Scholar 

  83. Bhatia K, Sharma RC, Gaur HC (1978) Conductivity of molten hydrated salts: manganese nitrate hexahydrate + ammonium nitrate system. Electrochim Acta 23:1367–1369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marcus, Y. (2016). Low-Melting Ionic Salts. In: Ionic Liquid Properties. Springer, Cham. https://doi.org/10.1007/978-3-319-30313-0_5

Download citation

Publish with us

Policies and ethics