Skip to main content

Theory Overview

  • Chapter
  • First Online:
Electroweak Physics at the LHC

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 267))

  • 665 Accesses

Abstract

The SM is set up as a quantum field theory, using a Lagrangian formalism with gauge symmetry constraints to describe the matter particles and their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1996)

    Book  MATH  Google Scholar 

  2. M. Bohm, A. Denner, H. Joos, Gauge Theories of the Strong and Electroweak Interaction (Teubner, Stuttgart, 2001)

    Book  MATH  Google Scholar 

  3. G.F. Sterman, An Introduction to Quantum Field Theory (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  4. R.K. Ellis, W.J. Stirling, B. Webber, QCD and collider physics. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1 (1996)

    Google Scholar 

  5. J. Collins, Foundations of perturbative QCD. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32, 1 (2011)

    MathSciNet  Google Scholar 

  6. T. Schörner-Sadenius (ed.), The Large Hadron Collider: Harvest of Run I (Springer, Berlin, 2015)

    Google Scholar 

  7. C.-N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954). doi:10.1103/PhysRev.96.191

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. Dittmaier, M. Schumacher, The Higgs boson in the standard model—from LEP to LHC: expectations, searches, and discovery of a candidate. Prog. Part. Nucl. Phys. 70, 1–54 (2013). doi:10.1016/j.ppnp.2013.02.001. arXiv:1211.4828

    Article  ADS  Google Scholar 

  9. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973). doi:10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  10. K.A. Olive et al., (Particle Data Group), Review of particle physics. Chin. Phys. C 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001

    Google Scholar 

  11. P. Minkowski, \(\mu \rightarrow e\gamma \) at a rate of one out of \(10^{9}\) muon decays? Phys. Lett. B 67, 421–428 (1977). doi:10.1016/0370-2693(77)90435-X

    Article  ADS  Google Scholar 

  12. R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980). doi:10.1103/PhysRevLett.44.912

    Article  ADS  Google Scholar 

  13. G. ’t Hooft, On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1 (1978). doi:10.1016/0550-3213(78)90153-0

    Google Scholar 

  14. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244–289 (2013). doi:10.1016/j.nuclphysb.2012.10.003. arXiv:1207.1303

    Google Scholar 

  15. A. Martin et al., Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009). doi:10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002

    Google Scholar 

  16. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241

    Article  ADS  Google Scholar 

  17. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977). doi:10.1016/0550-3213(77)90384-4

    Article  ADS  Google Scholar 

  18. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and \(e^+ e^-\) annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653 (1977)

    Google Scholar 

  19. V. Gribov, L. Lipatov, Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)

    Google Scholar 

  20. S. Dittmaier, M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension. JHEP 1001, 060 (2010). doi:10.1007/JHEP01(2010)060. arXiv:0911.2329

  21. A. Mueller (ed.), Perturbative Quantum Chromodynamics (Advanced Series on Directions in High Energy Physics) (World Scientific, Singapore, 1989)

    Google Scholar 

  22. G. Marchesini, B. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310, 461 (1988). doi:10.1016/0550-3213(88)90089-2

    Article  ADS  Google Scholar 

  23. B. Andersson et al., Parton fragmentation and string dynamics. Phys. Rept. 97, 31–145 (1983). doi:10.1016/0370-1573(83)90080-7

    Article  ADS  Google Scholar 

  24. B. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492 (1984). doi:10.1016/0550-3213(84)90333-X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias U. Mozer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mozer, M.U. (2016). Theory Overview. In: Electroweak Physics at the LHC. Springer Tracts in Modern Physics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-319-30381-9_2

Download citation

Publish with us

Policies and ethics