Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Starting from a reflection on the various roles played by simulations in scientific research, this chapter provides an overview of the biorobotic strategy for testing mechanistic explanations of animal behavior. After briefly summarizing the history and state of the art of biorobotics, it also addresses some key epistemological and methodological issues that need to be taken into serious consideration when setting up and performing biorobotic experiments. These issues mainly concern the relationship between the biorobot and the theoretical model under investigation, the choice of criteria for comparing animal and robotic behaviors, and the pros and cons of computer versus robotic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

artificial intelligence

MG:

mechanism governing

MI:

mechanism implemented

References

  1. R.O. Dror, R.M. Dirks, J.P. Grossman, H. Xu, D.E. Shaw: Biomolecular simulation: A computational microscope for molecular biology, Annu. Rev. Biophys. 41, 429–452 (2012)

    Article  Google Scholar 

  2. E. Winsberg: Computer simulation and the philosophy of science, Philos. Compass 4(5), 835–845 (2009)

    Article  Google Scholar 

  3. F. Guala: Models, simulations, and experiments. In: Model-Based Reasoning: Science, Technology, Values, ed. by L. Magnani, N.J. Nersessian (Springer, New York 2002) pp. 59–74

    Chapter  Google Scholar 

  4. J. Loeb: Comparative Physiology of the Brain and Comparative Psychology (Putnam, New York 1900)

    Google Scholar 

  5. R. Cordeschi: The Discovery of the Artificial: Behavior, Mind and Machines Before and Beyond Cybernetics (Kluwer Academic, Dordrecht 2002)

    Book  Google Scholar 

  6. E. Winsberg: Computer simulations in science. The Stanford Encyclopedia of Philosophy (Fall 2014 Edition), ed. by E.N. Zalta, http://plato.stanford.edu/archives/fall2014/entries/simulations-science/

  7. B. Webb: Can robots make good models of biological behaviour?, Behav. Brain Sci. 24, 1033–1050 (2001)

    Google Scholar 

  8. B. Webb: Validating biorobotic models, J. Neural Eng. 3(3), R25–35 (2006)

    Article  MathSciNet  Google Scholar 

  9. E. Datteri, G. Tamburrini: Biorobotic experiments for the discovery of biological mechanisms, Philos. Sci. 74(3), 409–430 (2007)

    Article  Google Scholar 

  10. G. Tamburrini, E. Datteri: Machine experiments and theoretical modelling: From cybernetic methodology to neuro-robotics, Minds Mach. 15(3-4), 335–358 (2005)

    Article  Google Scholar 

  11. D.M. Wolpert, R.C. Miall, M. Kawato: Internal models in the cerebellum, Trends Cogn. Sci. 2(9), 338–347 (1998)

    Article  Google Scholar 

  12. R. Cummins: Functional analysis, J. Philos. 72(20), 741–765 (1975)

    Article  Google Scholar 

  13. E.I. Moser, E. Kropff, M.-B. Moser: Place cells, grid cells, and the brain’s spatial representation system, Annu. Rev. Neurosci. 31, 69–89 (2008)

    Article  Google Scholar 

  14. J.R. Stroop: Studies of interference in serial verbal reactions, J. Exp. Psychol. 18(6), 643–662 (1935)

    Article  Google Scholar 

  15. C. Craver: Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience (Oxford Univ. Press, Oxford 2007)

    Book  Google Scholar 

  16. R. Cummins: The Nature of Psychological Explanation (MIT Press, Cambridge 1985) p. 208

    Google Scholar 

  17. S. Glennan: Rethinking mechanistic explanation, Philos. Sci. 69(3), 342–S353 (2002)

    Article  Google Scholar 

  18. J. Woodward: What is a mechanism? A counterfactual account, Philos. Sci. 69(S3), S366–S377 (2002)

    Article  Google Scholar 

  19. E. Datteri, F. Laudisa: Box-and-arrow explanations need not be more abstract than neuroscientific mechanism descriptions, Front. Psychol. 5, 464 (2014)

    Article  Google Scholar 

  20. D.S. Touretzky, A.D. Redish: Theory of rodent navigation based on interacting representations of space, Hippocampus 6, 247–270 (1996)

    Article  Google Scholar 

  21. F. Suppe: The Semantic Conception of Theories and Scientific Realism (Univ. of Illinois Press, Champaign 1989) p. 496

    Google Scholar 

  22. E. Datteri, F. Laudisa: Model testing, prediction and experimental protocols in neuroscience: A case study, Stud. Hist. Philos. Sci. 43(3), 602–610 (2012)

    Google Scholar 

  23. T. Shallice: From Neuropsychology to Mental Structure (Cambridge Univ. Press, Cambridge 1988)

    Book  Google Scholar 

  24. F.W. Grasso, T.R. Consi, D.C. Mountain, J. Atema: Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges, Robotics Auton. Syst. 30(1-2), 115–131 (2000)

    Article  Google Scholar 

  25. V. Braitenberg: Vehicles. Experiments in Synthetic Psychology (MIT Press, Cambridge 1986)

    Google Scholar 

  26. W. Grey Walter: An imitation of life, Sci. Am. 182(5), 42–45 (1950)

    Article  Google Scholar 

  27. H.A. Simon: The Sciences of the Artificial (MIT Press, Cambridge 1969)

    Google Scholar 

  28. J.L. Krichmar, A.K. Seth, D.A. Nitz, J.G. Fleischer, G.M. Edelman: Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions, Neuroinformatics 3(3), 197–221 (2005)

    Article  Google Scholar 

  29. T. Shallice, G.E. Hinton: Lesioning an attractor network: Investigations of acquired dyslexia, Psychol. Rev. 98(1), 74–95 (1991)

    Article  Google Scholar 

  30. P. Kitcher: Explanatory unification and the causal structure of the world. In: Scientific Explanation, ed. by P. Kitcher, W.C. Salmon (Univ. of Minnesota Press, Minneapolis 1989) pp. 410–505

    Google Scholar 

  31. V. Gijsbers: Why unification is neither necessary nor sufficient for explanation, Philos. Sci. 74(4), 481–500 (2007)

    Article  Google Scholar 

  32. N. Burgess, A. Jackson, T. Hartley, J. O’Keefe: Predictions derived from modelling the hippocampal role in navigation, Biol. Cybern. 83(3), 301–312 (2000)

    Article  Google Scholar 

  33. J. O’Keefe, J. Dostrovsky: The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely moving rat, Brain Res. 34, 171–175 (1971)

    Article  Google Scholar 

  34. S.B. Russell: A practical device to simulate the working of nervous discharges, J. Animal Behav. 3, 15–35 (1913)

    Article  Google Scholar 

  35. R.G. Krueger, C.L. Hull: An electro-chemical parallel to the conditioned reflex, J. Gen. Psychol. 5, 262–269 (1931)

    Article  Google Scholar 

  36. C.L. Hull, H. Baernstein: A mechanical parallel to the conditioned reflex, Science 45(2), 339–342 (1929)

    Google Scholar 

  37. T. Ross: Machines that think. A furhter statement, Psychol. Rev. 42, 387–393 (1935)

    Article  Google Scholar 

  38. T. Ross: The synthesis of intelligence. Its implications, Psychol. Rev. 45, 185–189 (1938)

    Article  Google Scholar 

  39. A. Rosenblueth, N. Wiener, J. Bigelow: Behavior, purpose and teleology, Philos. Sci. 10(1), 18–24 (1943)

    Article  Google Scholar 

  40. A. Rosenblueth, N. Wiener: The role of models in science, Philos. Sci. 12(4), 316–321 (1945)

    Article  Google Scholar 

  41. A. Newell, H.A. Simon: GPS, a program that simulates human thought. In: Computers and Thought, ed. by E.A. Feigenbaum, J. Feldman (McGraw-Hill, New York 1963) pp. 279–293

    Google Scholar 

  42. A. Newell, H.A. Simon: Human Problem Solving (Prentice-Hall, Englewood Cliffs 1972)

    Google Scholar 

  43. A. Newell, H.A. Simon: Computer simulation of human thinking, Science 134(3495), 2011–2017 (1961)

    Article  Google Scholar 

  44. N. Rochester, J.H. Holland, L.H. Haibt, W.L. Duda: Test on a cell assembly theory on the action of the brain using a large digital computer, IRE Trans. Inf. Theory IT-2, 80–93 (1956)

    Article  Google Scholar 

  45. A. Gelperin, J.J. Hopfield, D.W. Tank: The logic of Limax learning. In: Model Neural Networks and Behavior, ed. by A. Selverston (Plenum Press, New York 1985) pp. 237–261

    Chapter  Google Scholar 

  46. R.D. Hawkins: A biologically realistic neural network for higher-order features of classical conditioning. In: Parallel Distributed Processing: Implications for Psychology and Neurobiology, ed. by R.G.M. Morris (Clarendon Press, Oxford 1989) pp. 214–247

    Google Scholar 

  47. N.J. Nilsson: Shakey the Robot, Tech. note No. 323 (AI Center SRI International, Menlo Park 1984)

    Google Scholar 

  48. R.C. Arkin: Behavior-Based Robotics (The MIT Press, Cambridge 1998)

    Google Scholar 

  49. R. Reeve, B. Webb, A. Horchler, G. Indiveri, R. Quinn: New technologies for testing a model of cricket phonotaxis on an outdoor robot, Robotics Auton. Syst. 51(1), 41–54 (2005)

    Article  Google Scholar 

  50. B. Webb: Using robots to understand animal behavior, Adv. Study Behav. 38, 1–58 (2008)

    Article  Google Scholar 

  51. D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, R. Wehner: A mobile robot employing insect strategies for navigation, Robotics Auton. Syst. 30(1/2), 39–64 (2000)

    Article  Google Scholar 

  52. N. Franceschini, J. Pichon, C. Blanes, J. Brady: From insect vision to robot vision, Philos. Trans. Biol. Sci. 337(1281), 283–294 (1992)

    Article  Google Scholar 

  53. N. Franceschini, F. Ruffier, J. Serres: A bio-inspired flying robot sheds light on insect piloting abilities, Curr. Biol. 17(4), 329–335 (2007)

    Article  Google Scholar 

  54. P. Pyk, S. Bermúdez i Badia, U. Bernardet, P. Knüsel, M. Carlsson, J. Gu, P.F.M.J. Verschure, E. Chanie, B.S. Hansson, T.C. Pearce: An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search, Auton. Robots 20, 197213 (2006)

    Article  Google Scholar 

  55. M. Blanchard, F.C. Rind, P.F.M.J. Verschure: Collision avoidance using a model of the locust LGMD neuron, Robotics Auton. Syst. 30(1-2), 17–38 (2000)

    Article  Google Scholar 

  56. J. Ayers, J. Witting: Biomimetic approaches to the control of underwater walking machines, Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 365, 273–295 (2007)

    Article  Google Scholar 

  57. L. Manfredi, T. Assaf, S. Mintchev, S. Marrazza, L. Capantini, S. Orofino, L. Ascari, S. Grillner, P. Wallén, Ö. Ekeberg, C. Stefanini, P. Dario: A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion, Biol. Cybern. 107, 513–527 (2013)

    Article  Google Scholar 

  58. C. Wilbur, W. Vorus, Y. Cao, S. Currie: A lamprey-based undulatory vehicle. In: Neurotechnology for Biomimetic Robots, ed. by J. Ayers, J.L. Davis, A. Rudolph (MIT Press, Cambridge 2002) pp. 285–296

    Google Scholar 

  59. A.J. Ijspeert, A. Crespi, D. Ryczko, J.-M. Cabelguen: From swimming to walking with a salamander robot driven by a spinal cord model, Science 315, 1416–1420 (2007)

    Article  Google Scholar 

  60. F. Delcomyn: Walking robots and the central and peripheral control of locomotion in insects, Auton. Robots 7(3), 259–270 (1999)

    Article  Google Scholar 

  61. A.J. Ijspeert: Biorobotics: Using robots to emulate and investigate agile locomotion, Science 346(6206), 196–203 (2014)

    Article  Google Scholar 

  62. A.J. Ijspeert: Central pattern generators for locomotion control in animals and robots: A review, Neural Netw. 21, 642–653 (2008)

    Article  Google Scholar 

  63. H. Kimura, Y. Fukuoka, A.H. Cohen: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts, Int. J. Robotics Res. 26(5), 475–490 (2007)

    Article  Google Scholar 

  64. J.G. Fleischer, J.A. Gally, G.M. Edelman, J.L. Kirchmar: Retrospective and prospective responses arising in a modeled hippocampus during maze navigation by a brain-based device, Proc. Natl. Acad. Sci. USA 104, 3556–3561 (2007)

    Article  Google Scholar 

  65. G.N. Reeke, O. Sporns, G.M. Edelman: Synthetic neural modeling: The “Darwin” series of recognition automata, Proc. IEEE 78(9), 1498–1530 (1990)

    Article  Google Scholar 

  66. M.J. Pearson, A.G. Pipe, C. Melhuish, B. Mitchinson, T.J. Prescott: A robotic active touch system modeled on the rat whisker sensory system, Adapt. Behav. 15, 223–240 (2007)

    Article  Google Scholar 

  67. T.J. Prescott, M.J. Pearson, B. Mitchinson, J.C.W. Sullivan, A.G. Pipe: Whisking with robots: From rat vibrissae to biomimetic technology for active touch, IEEE Robotics Autom. Mag. 16, 42–50 (2009)

    Article  Google Scholar 

  68. M. Rucci, G.M. Edelman, J. Wray: Adaptation of orienting behavior: From the barn owl to a robotic system, IEEE Trans. Robotics Autom. 15(1), 96–110 (1999)

    Article  Google Scholar 

  69. C.-P. Chou, B. Hannaford: Study of human forearm posture maintenance with a physiologically based robotic arm and spinal level neural controller, Biol. Cybern. 76(4), 285–298 (1997)

    Article  MATH  Google Scholar 

  70. S. Eskiizmirliler: A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles, Biol. Cybern. 86, 379–394 (2002)

    Article  MATH  Google Scholar 

  71. D. Floreano, A.J. Ijspeert, S. Schaal: Robotics and Neuroscience, Curr. Biol. 24(18), R910–R920 (2014)

    Article  Google Scholar 

  72. M. Suzuki, D. Floreano, E.A. Di Paolo: The contribution of active body movement to visual development in evolutionary robots, Neural Netw. Off. J. Int. Neural Netw. Soc. 18(5/6), 656–665 (2005)

    Article  Google Scholar 

  73. S. Nolfi, D. Floreano: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press, Cambridge 2001) p. 336

    Google Scholar 

  74. J. Long: Darwin’s Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology (Basic Books, New York 2012) p. 281

    Google Scholar 

  75. A. Karniel, M. Kositsky, K.M. Fleming, M. Chiappalone, V. Sanguineti, S.T. Alford, F.A. Mussa-Ivaldi: Computational analysis in vitro: Dynamics and plasticity of a neuro-robotic system, J. Neural Eng. 2(3), 250–265 (2005)

    Article  Google Scholar 

  76. F.A. Mussa-Ivaldi, S.T. Alford, M. Chiappalone, L. Fadiga, A. Karniel, M. Kositsky, E. Maggiolini, S. Panzeri, V. Sanguineti, M. Semprini, A. Vato: New perspectives on the dialogue between brains and machines, Front. Neurosci. 4(1), 44–52 (2010)

    Google Scholar 

  77. P.V. Zelenin, T.G. Deliagina, S. Grillner, G.N. Orlovsky: Postural control in the lamprey: A study with a neuro-mechanical model, J. Neurophysiol. 84(6), 2880–2887 (2000)

    Google Scholar 

  78. E. Datteri: Simulation experiments in bionics: A regulative methodological perspective, Biol. Philos. 24(3), 301–324 (2009)

    Article  Google Scholar 

  79. W.S. Parker: Does matter really matter? Computer simulations, experiments, and materiality, Synthese 169(3), 483–496 (2009)

    Article  Google Scholar 

  80. P. Humphreys: Extending Ourselves: Computational Science, Empiricism, and Scientific Method (Oxford Univ. Press, Oxford 2004) p. 182

    Book  Google Scholar 

  81. E. Winsberg: Simulated experiments: Methodology for a virtual world, Philos. Sci. 70(1), 105–125 (2003)

    Article  Google Scholar 

  82. K.N. Jaax, B. Hannford: A biorobotic structural model of the mamalian muscle spindle primary afferent response, Ann. Biomed. Eng. 30(206), 84–96 (2001)

    Google Scholar 

  83. B. Raman, A. Gutierrez-Galvez, A. Perera-Lluna, R. Gutierrez-Osuna: Sensor-based machine olfaction with a neurodynamics model of the olfactory bulb, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 319–324

    Google Scholar 

  84. F.C. Rind: Motion detectors in the locust visual system: From biology to robot sensors, Microsc. Res. Tech. 56(4), 256–269 (2002)

    Article  Google Scholar 

  85. C. Imbert: Relevance, not invariance, explanatoriness, not manipulability: Discussion of woodward’s views on explanatory relevance, Philos. Sci. 80, 625–636 (2013)

    Article  Google Scholar 

  86. J. Woodward: Making Things Happen: A Theory of Causal Explanation (Oxford Univ. Press, Oxford 2003)

    Google Scholar 

  87. J.C. Schank, C.J. May, J.T. Tran, S.S. Joshi: A biorobotic investigation of Norway rat pups (Rattus norvegicus) in an arena, Adapt. Behav. 12(3/4), 161–173 (2004)

    Article  Google Scholar 

  88. T. Voegtlin, P. Verschure: What can robots tell us about brains? A synthetic approach towards the study of learning and problem solving, Rev. Neurosci. 10(3-4), 291–310 (1999)

    Article  Google Scholar 

  89. B. Webb: Animals versus animats: Or why not model the real Iguana?, Adapt. Behav. 17(4), 269–286 (2009)

    Article  Google Scholar 

  90. R. Pfeifer, J. Bongard: How the Body Shapes the Way We Think. A New View of Intelligence (MIT Press, Cambridge 2007)

    Google Scholar 

  91. J.C. Spagna, D.I. Goldman, P.-C. Lin, D.E. Koditschek, R.J. Full: Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain, Bioinspiration & Biomim. 2(1), 9–18 (2007)

    Article  Google Scholar 

  92. T. Ziemke: On the role of robot simulations in embodied cognitive science, AISB Journal 1(4), 389–399 (2003)

    Google Scholar 

  93. W. Gerstner, H. Sprekeler, G. Deco: Theory and simulation in neuroscience, Science 338(6103), 60–65 (2012)

    Article  Google Scholar 

  94. H. Markram: The blue brain project, Nat. Rev. Neurosci. 7, 153–160 (2006), doi:10.1038/nrn1848

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Datteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Datteri, E. (2017). Biorobotics. In: Magnani, L., Bertolotti, T. (eds) Springer Handbook of Model-Based Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-30526-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30526-4_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30525-7

  • Online ISBN: 978-3-319-30526-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics