Skip to main content

Role of Ion Channels in the Sperm Acrosome Reaction

  • Chapter
  • First Online:
Sperm Acrosome Biogenesis and Function During Fertilization

Abstract

The acrosome reaction (AR) is a unique exocytotic process where the acrosome, a single membrane-delimited specialized organelle, overlying the nucleus in the sperm head of many species, fuses with the overlying plasma membrane. This reaction, triggered by physiological inducers from the female gamete, its vicinity, or other stimuli, discharges the acrosomal content modifying the plasma membrane, incorporating the inner acrosomal membrane, and exposing it to the extracellular medium. The AR is essential for sperm–egg coat penetration, fusion with the eggs’ plasma membrane, and fertilization. As in most exocytotic processes Ca2+ is crucial for the AR, as well as intracellular pH and membrane potential changes. Thus, among the required processes needed for this reaction, ion permeability changes involving channels are pivotal. In spite of the key role ion channels play in the AR, their identity and regulation is not fully understood. Though molecular and pharmacological evidence indicates that various ionic channels participate during the AR, such as store-operated Ca2+ channels and voltage-dependent Ca2+ channels, whole cell patch clamp recordings have failed to detect some of them until now. Since sperm display a very high resistance and a minute cytoplasmic volume, very few channels are needed to achieve large membrane potential and concentration changes. Functional detection of few channels in the morphologically complex and tiny sperm poses technical problems, especially when their conductance is very small, as in the case of SOCs. Single channel recordings and novel fluorescence microscopy strategies will help to define the participation of ionic channels in the intertwined signaling network that orchestrates the AR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allegrucci C, Liguori L, Minelli A (2001) Stimulation by N 6-cyclopentyladenosine of A1 adenosine receptors, coupled to G alpha i2 protein subunit, has a capacitative effect on human spermatozoa. Biol Reprod 64:1653–1659

    Article  CAS  PubMed  Google Scholar 

  • Arcelay E, Salicioni AM, Wertheimer E, Visconti PE (2008) Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol 52:463–472

    Article  CAS  PubMed  Google Scholar 

  • Arndt L, Castonguay J, Arlt E et al (2014) NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa. Mol Biol Cell 25:948–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnoult C, Cardullo RA, Lemos JR, Florman HM (1996) Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida. Proc Natl Acad Sci U S A 93:13004–13009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoult C, Kazam IG, Visconti PE et al (1999) Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. Proc Natl Acad Sci U S A 96:6757–6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker MA (2011) The “omics” revolution and our understanding of sperm cell biology. Asian J Androl 13(1):6–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks FCL, Calvert RC, Burnstock G (2010) Changing P2X receptor localization on maturing sperm in the epididymides of mice, hamsters, rats, and humans: a preliminary study. Fertil Steril 93:1415–1420

    Article  CAS  PubMed  Google Scholar 

  • Battistone M, Brukman N, Carvajal G et al (2015) From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization. Asian J Androl 17(5):711–715

    PubMed  PubMed Central  Google Scholar 

  • Blackmore PF (1999) Extragenomic actions of progesterone in human sperm and progesterone metabolites in human platelets. Steroids 64:149–156

    Article  CAS  PubMed  Google Scholar 

  • Blackmore PF, Beebe SJ, Danforth DR, Alexander N (1990) Progesterone and 17 alpha-hydroxyprogesterone. Novel stimulators of calcium influx in human sperm. J Biol Chem 265:1376–1380

    CAS  PubMed  Google Scholar 

  • Bray C, Son JH, Kumar P et al (2002a) A role for the human sperm glycine receptor/Cl(-) channel in the acrosome reaction initiated by recombinant ZP3. Biol Reprod 66:91–97

    Article  CAS  PubMed  Google Scholar 

  • Bray C, Son JH, Meizel S (2002b) A nicotinic acetylcholine receptor is involved in the acrosome reaction of human sperm initiated by recombinant human ZP3. Biol Reprod 67:782–788

    Article  CAS  PubMed  Google Scholar 

  • Bray C, Son JH, Meizel S (2005) Acetylcholine causes an increase of intracellular calcium in human sperm. Mol Hum Reprod 11:881–889

    Article  CAS  PubMed  Google Scholar 

  • Brenker C, Goodwin N, Weyand I et al (2012) The CatSper channel: a polymodal chemosensor in human sperm. EMBO J 31:1654–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewis IA, Clayton R, Barratt CL et al (1996) Recombinant human zona pellucida glycoprotein 3 induces calcium influx and acrosome reaction in human spermatozoa. Mol Hum Reprod 2:583–589

    Article  CAS  PubMed  Google Scholar 

  • Buffone MG, Hirohashi N, Gerton GL (2014) Unresolved questions concerning mammalian sperm acrosomal exocytosis. Biol Reprod 90(112):1–8

    Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson AE, Westenbroek RE, Quill T et al (2003) CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci U S A 100:14864–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo Bennett J, Roggero CM, Mancifesta FE, Mayorga LS (2010) Calcineurin-mediated dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J Biol Chem 285:26269–26278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez JC, de la Vega-Beltrán JL, Escoffier J et al (2013) Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization. PLoS One 8:1–13

    Article  CAS  Google Scholar 

  • Chávez JC, Ferreira JJ, Butler A et al (2014) SLO3 K+ channels control calcium entry through CATSPER channels in sperm. J Biol Chem 289:32266–32275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung JJ, Navarro B, Krapivinsky G et al (2011) A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2(153):1–12

    Google Scholar 

  • Chung J-J, Shim S-H, Everley RA et al (2014) Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157:808–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen R, Buttke DE, Asano A et al (2014) Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 28:310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia J, Michelangeli F, Publicover S (2015) Regulation and roles of Ca2+ stores in human sperm. Reproduction 150:R65–R76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costello S, Michelangeli F, Nash K et al (2009) Ca2+-stores in sperm: their identities and functions. Reproduction 138:425–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan JC (1952) Studies on the acrosome. I. Reaction to egg-water and other stimuli. Biol Bull 103:54–66

    Article  Google Scholar 

  • Dan JC (1954) Studies on the acrosome. III. Effect of calcium deficiency. Biol Bull 107:335–349

    Article  CAS  Google Scholar 

  • Daniel L, Etkovitz N, Weiss SR et al (2010) Regulation of the sperm EGF receptor by ouabain leads to initiation of the acrosome reaction. Dev Biol 344:650–657

    Article  CAS  PubMed  Google Scholar 

  • Darszon A, Hernández-Cruz A (2014) T-type Ca2+ channels in spermatogenic cells and sperm. Pflugers Arch 466:819–831

    Article  CAS  PubMed  Google Scholar 

  • Darszon A, Labarca P, Nishigaki T, Espinosa F (1999) Ion channels in sperm physiology. Physiol Rev 79:481–510

    CAS  PubMed  Google Scholar 

  • Darszon A, Lopez-Martinez P, Acevedo JJ et al (2006) T-type Ca2+ channels in sperm function. Cell Calcium 40:241–252

    Article  CAS  PubMed  Google Scholar 

  • Darszon A, Nishigaki T, Beltrán C, Treviño CL (2011) Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev 91:1305–1355

    Article  CAS  PubMed  Google Scholar 

  • Darszon A, Sánchez-Cárdenas C, Orta G et al (2012) Are TRP channels involved in sperm development and function? Cell Tissue Res 349:749–764

    Article  CAS  PubMed  Google Scholar 

  • De Blas G, Michaut M, Trevino CL et al (2002) The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis. J Biol Chem 277:49326–49331

    Article  PubMed  CAS  Google Scholar 

  • De Blas GA, Darszon A, Ocampo AY et al (2009) TRPM8, a versatile channel in human sperm. PLoS One 4, e6095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De La Vega-Beltran JL, Sanchez-Cardenas C, Krapf D et al (2012) Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction. J Biol Chem 287:44384–44393

    Article  CAS  Google Scholar 

  • del Cantero MR, Velázquez IF, Streets AJ et al (2015) The cAMP signaling pathway and direct protein kinase a phosphorylation regulate polycystin-2 (TRPP2) channel function. J Biol Chem 290:23888–23896

    Article  CAS  Google Scholar 

  • Domino SE, Bocckino SB, Garbers DL (1989) Activation of phospholipase D by the fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa. J Biol Chem 264:9412–9419

    CAS  PubMed  Google Scholar 

  • Dynes JL, Amcheslavsky A, Cahalan MD (2015) Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx. Proc Natl Acad Sci U S A 13(2):440–445

    Google Scholar 

  • El-Talatini MR, Taylor AH, Elson JC et al (2009) Localisation and function of the endocannabinoid system in the human ovary. PLoS One 4, e4579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernesto JI, Weigel Munoz M, Battistone MA et al (2015) CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization. J Cell Biol 210:1213–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escoffier J, Boisseau S, Serres C et al (2007) Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice. J Cell Physiol 212:753–763

    Article  CAS  PubMed  Google Scholar 

  • Escoffier J, Navarrete F, Haddad D et al (2015) Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Prod 92:1–11

    CAS  Google Scholar 

  • Espinosa F, Darszon A (1995) Mouse sperm membrane potential: changes induced by Ca2+. FEBS Lett 372:119–125

    Article  CAS  PubMed  Google Scholar 

  • Espinosa F, de la Vega-Beltran JL, Lopez-Gonzalez I et al (1998) Mouse sperm patch-clamp recordings reveal single Cl- channels sensitive to niflumic acid, a blocker of the sperm acrosome reaction. FEBS Lett 426:47–51

    Article  CAS  PubMed  Google Scholar 

  • Espinosa F, Lopez-Gonzalez I, Serrano CJ et al (1999) Anion channel blockers differentially affect T-type Ca(2+) currents of mouse spermatogenic cells, alpha1E currents expressed in Xenopus oocytes and the sperm acrosome reaction. Dev Genet 25:103–114

    Article  CAS  PubMed  Google Scholar 

  • Florman HM, Corron ME, Kim TD, Babcock DF (1992) Activation of voltage-dependent calcium channels of mammalian sperm is required for zona pellucida-induced acrosomal exocytosis. Dev Biol 152:304–314

    Article  CAS  PubMed  Google Scholar 

  • Florman HM, Jungnickel MK, Sutton KA (2008) Regulating the acrosome reaction. Int J Dev Biol 52(5–6):503–510

    Article  CAS  PubMed  Google Scholar 

  • Foresta C, Rossato M, Di Virgilio F (1992) Extracellular ATP is a trigger for the acrosome reaction in human spermatozoa. J Biol Chem 267:19443–19447

    CAS  PubMed  Google Scholar 

  • Fujinoki M, Takei GL, Kon H (2015) Non-genomic regulation and disruption of spermatozoal in vitro hyperactivation by oviductal hormones. J Physiol Sci. Nov 5. [Epub ahead of print]

    Google Scholar 

  • Garcia MA, Meizel S (1999) Determination of the steady-state intracellular chloride concentration in capacitated human spermatozoa. J Androl 20:88–93

    CAS  PubMed  Google Scholar 

  • Giamarchi A, Delmas P (2007) Activation mechanisms and functional roles of TRPP2 cation channels. In: Liedtke WB, Heller S (eds) TRP ion channel function sensory transduction and cellular signaling cascades, Chapter 14. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Gibbs GM, Orta G, Reddy T et al (2011) Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci U S A 108:7034–7039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Martinez MT, Galindo BE, de De La Torre L et al (2001) A sustained increase in intracellular Ca(2+) is required for the acrosome reaction in sea urchin sperm. Dev Biol 236:220–229

    Article  CAS  PubMed  Google Scholar 

  • Granados-Gonzalez G, Mendoza-Lujambio I, Rodriguez E et al (2005) Identification of voltage-dependent Ca2+ channels in sea urchin sperm. FEBS Lett 579:6667–6672

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Kirkman-Brown JC, Korchev Y et al (2004) Multi-state, 4-aminopyridine-sensitive ion channels in human spermatozoa. Dev Biol 274:308–317

    Article  CAS  PubMed  Google Scholar 

  • Guerrero A, Darszon A (1989a) Egg jelly triggers a calcium influx which inactivates and is inhibited by calmodulin antagonists in the sea urchin sperm. Biochim Biophys Acta 980:109–116

    Article  CAS  PubMed  Google Scholar 

  • Guerrero A, Darszon A (1989b) Evidence for the activation of two different Ca2+ channels during the egg jelly-induced acrosome reaction of sea urchin sperm. J Biol Chem 264:19593–19599

    CAS  PubMed  Google Scholar 

  • Guerrero A, Sanchez JA, Darszon A (1987) Single-channel activity in sea urchin sperm revealed by the patch-clamp technique. FEBS Lett 220:295–298

    Article  CAS  PubMed  Google Scholar 

  • Gunaratne HJ, Moy GW, Kinukawa M et al (2007) The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC Genomics 8(235):1–19

    Google Scholar 

  • He XB, Hu JH, Wu Q et al (2001) Identification of GABA(B) receptor in rat testis and sperm. Biochem Biophys Res Commun 283:243–247

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Gonzalez EO (2005) Sodium and epithelial sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm. J Biol Chem 281:5623–5633

    Article  PubMed  CAS  Google Scholar 

  • Hinsch KD, De Pinto V, Aires VA et al (2004) Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum. J Biol Chem 279:15281–15288

    Article  CAS  PubMed  Google Scholar 

  • Hirohashi N, Vacquier VD (2003) Store-operated calcium channels trigger exocytosis of the sea urchin sperm acrosomal vesicle. Biochem Biophys Res Commun 304:285–292

    Article  CAS  PubMed  Google Scholar 

  • Ho K, Wolff CA, Suarez SS (2009) CatSper-null mutant spermatozoa are unable to ascend beyond the oviductal reservoir. Reprod Fertil Dev 21:345–350

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, He XB, Wu Q et al (2002) Subunit composition and function of GABAA receptors of rat spermatozoa. Neurochem Res 27:195–199

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, Zhang JF, Ma YH et al (2004) Impaired reproduction in transgenic mice overexpressing Gamma-aminobutyric acid transporter I (GAT1). Cell Res 14:54–59

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Liu Y, Wu J, Liu X (2015) Influx-operated Ca2+ entry via PKD2-L1 and PKD1-L3 channels facilitates sensory responses to polymodal transient stimuli. Cell Rep 13:1–14

    Article  CAS  Google Scholar 

  • Jaldety Y, Glick Y, Orr-Urtreger A et al (2012) Sperm epidermal growth factor receptor (EGFR) mediates α7 acetylcholine receptor (AChR) activation to promote fertilization. J Biol Chem 287:22328–22340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin M, Fujiwara E, Kakiuchi Y et al (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A 108:4892–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungnickel MK, Marrero H, Birnbaumer L et al (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    Article  CAS  PubMed  Google Scholar 

  • Kanbara K, Okamoto K, Nomura S et al (2010) The cellular expression of GABA(A) receptor alpha1 subunit during spermatogenesis in the mouse testis. Histol Histopathol 25:1229–1238

    CAS  PubMed  Google Scholar 

  • Kanbara K, Mori Y, Kubota T et al (2011) Expression of the GABAA receptor/chloride channel in murine spermatogenic cells. Histol Histopathol 26:95–106

    CAS  PubMed  Google Scholar 

  • Kazazoglou T, Schackmann RW, Fosset M, Shapiro BM (1985) Calcium channel antagonists inhibit the acrosome reaction and bind to plasma membranes of sea urchin sperm. Proc Natl Acad Sci U S A 82:1460–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kierszenbaum AL (2004) Polycystins: what polycystic kidney disease tells us about sperm. Mol Reprod Dev 67:385–388

    Article  CAS  PubMed  Google Scholar 

  • Kirichok Y, Navarro B, Clapham DE (2006) Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439:737–740

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Meizel S (2005) Nicotinic acetylcholine receptor subunits and associated proteins in human sperm. J Biol Chem 280:25928–25935

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Meizel S (2008) Identification and spatial distribution of glycine receptor subunits in human sperm. Reproduction 136:387–390

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, Kaneko S, Yoshimura Y et al (1999) Influence of progesterone and GABAA receptor on calcium mobilization during human sperm acrosome reaction. Arch Androl 42:185–191

    Article  CAS  PubMed  Google Scholar 

  • Kwon W-S, Park Y-J, Mohamed E-SA, Pang M-G (2013) Voltage-dependent anion channels are a key factor of male fertility. Fertil Steril 99:354–361

    Article  CAS  PubMed  Google Scholar 

  • Laing RJ, Dhaka A (2015) ThermoTRPs and pain. Neuroscientist 1–17

    Google Scholar 

  • Liévano A, Santi CM, Serrano CJ et al (1996) T-type Ca2+ channels and alpha1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 388:150–154

    Article  PubMed  Google Scholar 

  • Linares-Hernandez L, Guzman-Grenfell AM, Hicks-Gomez JJ, Gonzalez-Martinez MT (1998) Voltage-dependent calcium influx in human sperm assessed by simultaneous optical detection of intracellular calcium and membrane potential. Biochim Biophys Acta 1372:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lishko PV, Kirichok Y (2010) The role of Hv1 and CatSper channels in sperm activation. J Physiol 588:4667–4672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y (2010) Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140:327–337

    Article  CAS  PubMed  Google Scholar 

  • Lishko P, Kirichok Y, Ren D et al (2011a) The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 2012 74:453–475, Published online 2011 Oct 13

    Article  CAS  Google Scholar 

  • Lishko PV, Botchkina IL, Kirichok Y (2011b) Progesterone activates the principal Ca2+ channel of human sperm. Nature 471:387–391

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xia J, Cho KH et al (2007) CatSperbeta, a novel transmembrane protein in the CatSper channel complex. J Biol Chem 282:18945–18952

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang P, Wang Z, Zhang W (2011) The use of anti-VDAC2 antibody for the combined assessment of human sperm acrosome integrity and ionophore A23187-induced acrosome reaction. PLoS One 6, e16985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobley A, Pierron V, Reynolds L et al (2003) Identification of human and mouse CatSper3 and CatSper4 genes: characterisation of a common interaction domain and evidence for expression in testis. Reprod Biol Endocrinol 1(53):1–15

    Google Scholar 

  • Lopez-Gonzalez I, Torres-Rodriguez P, Sanchez-Carranza O et al (2014) Membrane hyperpolarization during human sperm capacitation. Mol Hum Reprod 20:619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Stewart AJ, Sadler PJ et al (2008) Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans 36:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Luria A, Rubinstein S, Lax Y, Breitbart H (2002) Extracellular adenosine triphosphate stimulates acrosomal exocytosis in bovine spermatozoa via P2 purinoceptor. Biol Reprod 66:429–437

    Article  CAS  PubMed  Google Scholar 

  • Ma YH, Hu JH, Zhou XG et al (2000) Gamma-aminobutyric acid transporter (GAT1) overexpression in mouse affects the testicular morphology. Cell Res 10:59–69

    Article  CAS  PubMed  Google Scholar 

  • Magleby KL (2003) Gating mechanism of BK (Slo1) channels: so near, yet so far. J Gen Physiol 121:81–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-López P, Santi CM, Treviño CL et al (2009) Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by Slo3 channels. Biochem Biophys Res Commun 381:204–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-López P, Treviño CL, de la Vega-Beltrán JL et al (2011) TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction. J Cell Physiol 226:1620–1631

    Article  PubMed  CAS  Google Scholar 

  • Mayorga LS, Tomes CN, Belmonte SA (2007) Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 59:286–292

    Article  CAS  PubMed  Google Scholar 

  • Meizel S (2004) The sperm, a neuron with a tail: “neuronal” receptors in mammalian sperm. Biol Rev Camb Philos Soc 79:713–732

    Article  PubMed  Google Scholar 

  • Meizel S, Son JH (2005) Studies of sperm from mutant mice suggesting that two neurotransmitter receptors are important to the zona pellucida-initiated acrosome reaction. Mol Reprod Dev 72:250–258

    Article  CAS  PubMed  Google Scholar 

  • Meizel S, Turner KO (1993) Initiation of the human sperm acrosome reaction by thapsigargin. J Exp Zool 267:350–355

    Article  CAS  PubMed  Google Scholar 

  • Melendrez CS, Meizel S (1995) Studies of porcine and human sperm suggesting a role for a sperm glycine receptor/Cl- channel in the zona pellucida-initiated acrosome reaction. Biol Reprod 53:676–683

    Article  CAS  PubMed  Google Scholar 

  • Miller MR, Mansell SA, Meyers SA, Lishko PV (2015) Flagellar ion channels of sperm: similarities and differences between species. Cell Calcium 58:105–113

    Article  CAS  PubMed  Google Scholar 

  • Miller MR, Mannowetz N, Iavarone AT et al (2016) Unconventional endocannabinoid signaling governs sperm activation via sex hormone progesterone. Science. Mar 17. pii:aad6887 [Epub ahead of print]

    Google Scholar 

  • Minelli A, Allegrucci C, Piomboni P et al (2000) Immunolocalization of A1 adenosine receptors in mammalian spermatozoa. J Histochem Cytochem 48:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Minelli A, Liguori L, Bellaza I et al (2004) Involvement of A1 adenosine receptors in the acquisition of fertilizing capacity. J Androl 25:286–292

    Article  CAS  PubMed  Google Scholar 

  • Minelli A, Bellezza I, Collodel G, Fredholm BB (2008) Promiscuous coupling and involvement of protein kinase C and extracellular signal-regulated kinase 1/2 in the adenosine A1 receptor signalling in mammalian spermatozoa. Biochem Pharmacol 75:931–941

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Jones S, Howl J et al (2015) Cell-penetrating peptides, targeting the regulation of store-operated channels, slow decay of the progesterone-induced [Ca2+]i signal in human sperm. Mol Hum Reprod 21:563–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro B, Kirichok Y, Clapham DE (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci U S A 104:7688–7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro B, Miki K, Clapham DE (2011) ATP-activated P2X2 current in mouse spermatozoa. Proc Natl Acad Sci U S A 108(34):14342–14347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill AT, Moy GW, Vacquier VD (2004) Polycystin-2 associates with the polycystin-1 homolog, suREJ3, and localizes to the acrosomal region of sea urchin spermatozoa. Mol Reprod Dev 67:472–477

    Article  CAS  PubMed  Google Scholar 

  • Nishigaki T, José O, González-Cota AL et al (2014) Intracellular pH in sperm physiology. Biochem Biophys Res Commun 450:1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystoriak MA, Nieves-Cintrón M, Navedo MF (2013) Capturing single L-type Ca(2+) channel function with optics. Biochim Biophys Acta 1833:1657–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole CM, Arnoult C, Darszon A et al (2000) Ca(2+) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 11:1571–1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Okabe M (2014) Mechanism of fertilization: a modern view. Exp Anim 63:357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orta G, Ferreira G, Jose O et al (2012) Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction. J Physiol 590:2659–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrat C, Serres C, Jouannet P (2000) Induction of a sodium ion influx by progesterone in human spermatozoa. Biol Reprod 62:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Paulais M, Lachheb S, Teulon J (2006) A Na+- and Cl—activated K+ channel in the thick ascending limb of mouse kidney. J Gen Physiol 127:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto FM, Ravina CG, Fernández-Sánchez M et al (2009) Molecular and functional characterization of voltage-gated sodium channels in human sperm. Reprod Biol Endocrinol 7(71):1–9

    Google Scholar 

  • Publicover S, Harper CV, Barratt C (2007) [Ca2+]i signalling in sperm—making the most of what you’ve got. Nat Cell Biol 9(3):235–242

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Moran MM, Navarro B et al (2007) All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A 104:1219–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quill TA, Ren D, Clapham DE, Garbers DL (2001) A voltage-gated ion channel expressed specifically in spermatozoa. Proc Natl Acad Sci U S A 98:12527–12531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Navarro B, Perez G et al (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Darszon A (2003) Intracellular sodium changes during the speract response and the acrosome reaction in sea urchin sperm. J Physiol 546:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan ER, Murase T, Shi QX (1994) Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 266(5190):1578–1581

    Article  CAS  PubMed  Google Scholar 

  • Rossato M, Di Virgilio F, Foresta C (1996) Involvement of osmo-sensitive calcium influx in human sperm activation. Mol Hum Reprod 2:903–909

    Article  CAS  PubMed  Google Scholar 

  • Sakata Y, Saegusa H, Zong S et al (2001) Analysis of Ca2+ currents in spermatocytes from mice lacking Cav2.3 (α1E) Ca2+ channel. Biochem Biophys Res Commun 288:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Sakata Y, Saegusa H, Zong S et al (2002) Ca(v)2.3 (alpha1E) Ca2+ channel participates in the control of sperm function. FEBS Lett 516:229–233

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Carranza O, Torres-Rodríguez P, Darszon A et al (2015) Pharmacology of hSlo3 channels and their contribution in the capacitation-associated hyperpolarization of human sperm. Biochem Biophys Res Commun 466:554–559

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Tusie AA, Vasudevan SR, Churchill GC et al (2014) Characterization of NAADP-mediated calcium signaling in human spermatozoa. Biochem Biophys Res Commun 443:531–536

    Article  PubMed  CAS  Google Scholar 

  • Santi CM, Martinez-Lopez P, de la Vega-Beltran JL et al (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Son JH, Meizel S (2000) The mouse sperm glycine receptor/chloride channel: cellular localization and involvement in the acrosome reaction initiated by glycine. J Androl 21:99–106

    CAS  PubMed  Google Scholar 

  • Sato Y, Tucker RP, Meizel S (2002) Detection of glycine receptor/Cl- channel beta subunit transcripts in mouse testis. Zygote 10:105–108

    Article  CAS  PubMed  Google Scholar 

  • Schackmann RW, Eddy EM, Shapiro BM (1978) The acrosome reaction of strongylocentrotus purpuratus sperm. Ion requirements and movements. Dev Biol 65:483–495

    Article  CAS  PubMed  Google Scholar 

  • Schackmann RW, Christen R, Shapiro BM (1981) Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc Natl Acad Sci U S A 78:6066–6070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber M, Wei A, Yuan A et al (1998) Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J Biol Chem 273:3509–3516

    Article  CAS  PubMed  Google Scholar 

  • Schuel H, Burkman LJ (2005) A tale of two cells: endocannabinoid-signaling regulates functions of neurons and sperm. Biol Reprod 73:1078–1086

    CAS  PubMed  Google Scholar 

  • Shi QX, Yuan YY, Roldan ER (1997) Gamma-aminobutyric acid (GABA) induces the acrosome reaction in human spermatozoa. Mol Hum Reprod 3:677–683

    Article  CAS  PubMed  Google Scholar 

  • Sieghart W (1992) GABAA receptors: ligand-gated Cl- ion channels modulated by multiple drug-binding sites. Trends Pharmacol Sci 13:446–450

    Article  CAS  PubMed  Google Scholar 

  • Son JH, Meizel S (2003) Evidence suggesting that the mouse sperm acrosome reaction initiated by the zona pellucida involves an alpha7 nicotinic acetylcholine receptor. Biol Reprod 68:1348–1353

    Article  CAS  PubMed  Google Scholar 

  • Stamboulian S, Kim D, Shin HS et al (2004) Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the CaV3.1 (alpha1G) calcium channel: CaV3.2 (alpha1H) is the main functional calcium channel in wild-type spermatogenic cells. J Cell Physiol 200:116–124

    Article  CAS  PubMed  Google Scholar 

  • Stamboulian S, Moutin MJ, Treves S et al (2005) Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337

    Article  CAS  PubMed  Google Scholar 

  • Stein RJ, Santos S, Nagatomi J et al (2004) Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol 172:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Strunker T, Goodwin N, Brenker C et al (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471:382–386

    Article  PubMed  CAS  Google Scholar 

  • Suhaiman L, De Blas GA, Obeid LM et al (2010) Sphingosine 1-phosphate and sphingosine kinase are involved in a novel signaling pathway leading to acrosomal exocytosis. J Biol Chem 285:16302–16314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton KA, Jungnickel MK, Florman HM (2008) A polycystin-1 controls postcopulatory reproductive selection in mice. Proc Natl Acad Sci U S A 105:8661–8666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Q-Y, Zhang Z, Xia X-M, Lingle CJ (2010) Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine. Channels (Austin) 4:22–41

    Article  CAS  Google Scholar 

  • Tateno H, Krapf D, Hino T et al (2013) Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proc Natl Acad Sci U S A 110:18543–18548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thinnes FP (2015) Biochimica et biophysica acta phosphorylation, nitrosation and plasminogen K3 modulation make VDAC-1 lucid as part of the extrinsic apoptotic pathway—resulting thesis: native VDAC-1 indispensable for finalisation of its 3D structure. BBA Biomembr 1848:1410–1416

    Article  CAS  Google Scholar 

  • Thomas P, Meizel S (1989) Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2+ influx. Biochem J 264:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomes CN, McMaster CR, Saling PM (1996) Activation of mouse sperm phosphatidylinositol-4,5 bisphosphate-phospholipase C by zona pellucida is modulated by tyrosine phosphorylation. Mol Reprod Dev 43:196–204

    Article  CAS  PubMed  Google Scholar 

  • Torres-Fuentes JL, Rios M, Moreno RD (2015) Involvement of a P2X7 receptor in the acrosome reaction induced by ATP in rat spermatozoa. J Cell Physiol 230(12):3068–3075

    Article  CAS  PubMed  Google Scholar 

  • Trevino CL, Serrano CJ, Beltran C et al (2001) Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509:119–125

    Article  CAS  PubMed  Google Scholar 

  • Trevino CL, Felix R, Castellano LE et al (2004) Expression and differential cell distribution of low-threshold Ca(2+) channels in mammalian male germ cells and sperm. FEBS Lett 563:87–92

    Article  CAS  PubMed  Google Scholar 

  • Triphan X, Menzel VA, Petrunkina AM et al (2008) Localisation and function of voltage-dependent anion channels (VDAC) in bovine spermatozoa. Pflugers Arch 455:677–686

    Article  CAS  PubMed  Google Scholar 

  • Vacquier VD (2012) The quest for the sea urchin egg receptor for sperm. Biochem Biophys Res Commun 425:583–587

    Article  CAS  PubMed  Google Scholar 

  • Vacquier VD, Swanson WJ (2011) Selection in the rapid evolution of gamete recognition proteins in marine invertebrates. Cold Spring Harb Perspect Biol 3:1–17

    Article  CAS  Google Scholar 

  • Vacquier VD, Loza-Huerta A, Garcia-Rincon J et al (2014) Soluble adenylyl cyclase of sea urchin spermatozoa. Biochim Biophys Acta 1842:2621–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilela-Silva AC, Hirohashi N, Mourao PA (2008) The structure of sulfated polysaccharides ensures a carbohydrate-based mechanism for species recognition during sea urchin fertilization. Int J Dev Biol 52:551–559

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE (2012) Sperm bioenergetics in a nutshell. Biol Reprod 87:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walensky LD, Snyder SH (1995) Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J Cell Biol 130:857–869

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu J, Cho KH, Ren D (2009) A novel, single, transmembrane protein CATSPERG is associated with CATSPER1 channel protein. Biol Reprod 81:539–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wennemuth G, Westenbroek RE, Xu T et al (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217

    Article  CAS  PubMed  Google Scholar 

  • Wissenbach U, Schroth G, Philipp S, Flockerzi V (1998) Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett 429:61–66

    Article  CAS  PubMed  Google Scholar 

  • Wistrom CA, Meizel S (1993) Evidence suggesting involvement of a unique human sperm steroid receptor/Cl- channel complex in the progesterone-initiated acrosome reaction. Dev Biol 159:679–690

    Article  CAS  PubMed  Google Scholar 

  • Wrighton DC, Muench SP, Lippiat JD (2015) Mechanism of inhibition of mouse Slo3 (K Ca 5. 1) potassium channels by quinine, quinidine and barium. Br J Pharmacol 3:4355–4363

    Article  CAS  Google Scholar 

  • Xia J, Ren D (2009) Egg coat proteins activate calcium entry into mouse sperm via CATSPER channels. Biol Reprod 80:1092–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Reigada D, Mitchell CH, Ren D (2007) CATSPER channel-mediated Ca2+ entry into mouse sperm triggers a tail-to-head propagation. Biol Reprod 77:551–559

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagimachi R (1994) Mammalian Fertilization. In: Knobile E, Neill JD (eds) The physiology of reproduction, Second Edition. Raven, New York, pp 189–317

    Google Scholar 

  • Yuan A, Santi CM, Wei A et al (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37:765–773

    Article  CAS  PubMed  Google Scholar 

  • Zanetti N, Mayorga LS (2009) Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol Reprod 81:396–405

    Article  CAS  PubMed  Google Scholar 

  • Zeng XH, Yang C, Kim ST et al (2011) Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci U S A 108:5879–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X-H, Navarro B, Xia X-M et al (2013) Simultaneous knockout of Slo3 and CatSper1 abolishes all alkalization- and voltage-activated current in mouse spermatozoa. J Gen Physiol 142:305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Yang C, Xia X et al (2015) SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility. Proc Natl Acad Sci U S A 112(8):2599–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Barritt GJ (2006) TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr Relat Cancer 13:27–38

    Article  PubMed  CAS  Google Scholar 

  • Zhu MX, Ma J, Parrington J et al (2010) Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol Cell Physiol 298:C430–C441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shirley Ainsworth, Roberto Rodríguez, Arturo Ocádiz, Juan Manuel Hurtado, David Santiago, Paulina Torres-Rodríguez, and Jose Luis de la Vega-Beltrán for their excellent library, computer service, and technical assistance. This work was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development grants (NIH RO1 HD38082 to Pablo Visconti); the Alexander von Humboldt Foundation (to CT); CONACyT-Mexico Fronteras de la Ciencia 71 to AD, CB, and CT; and DGAPA/UNAM (IN204112 to CB, IN203116 to CT and IN205516 to AD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Darszon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beltrán, C. et al. (2016). Role of Ion Channels in the Sperm Acrosome Reaction. In: Buffone, M. (eds) Sperm Acrosome Biogenesis and Function During Fertilization. Advances in Anatomy, Embryology and Cell Biology, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-30567-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30567-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30565-3

  • Online ISBN: 978-3-319-30567-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics