Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 220))

Abstract

Exocytosis is a fundamental process used by eukaryotic cells to release biological compounds and to insert lipids and proteins in the plasma membrane. Specialized secretory cells undergo regulated exocytosis in response to physiological signals. Sperm exocytosis or acrosome reaction (AR) is essentially a regulated secretion with special characteristics. We will focus here on some of these unique features, covering the topology, kinetics, and molecular mechanisms that prepare, drive, and regulate membrane fusion during the AR. Last, we will compare acrosomal release with exocytosis in other model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann F, Zitranski N, Heydecke D, Wilhelm B, Gudermann T, Boekhoff I (2008) The multi-PDZ domain protein MUPP1 as a lipid raft-associated scaffolding protein controlling the acrosome reaction in mammalian spermatozoa. J Cell Physiol 214:757–768

    Article  CAS  PubMed  Google Scholar 

  • Albert AP (2011) Gating mechanisms of canonical transient receptor potential channel proteins: role of phosphoinositols and diacylglycerol. Adv Exp Med Biol 704:391–411

    Article  CAS  PubMed  Google Scholar 

  • Asano A, Selvaraj V, Buttke DE, Nelson JL, Green KM, Evans JE, Travis AJ (2009) Biochemical characterization of membrane fractions in murine sperm: identification of three distinct sub-types of membrane rafts. J Cell Physiol 218:537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano A, Nelson-Harrington JL, Travis AJ (2013) Phospholipase B is activated in response to sterol removal and stimulates acrosome exocytosis in murine sperm. J Biol Chem 288:28104–28115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aveldaño MI, Rotstein NP, Vermouth NT (1992) Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Biochem J 283:235–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Barr FA (2013) Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biol 202:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702

    Article  CAS  PubMed  Google Scholar 

  • Bedford JM (1998) Mammalian fertilization misread? Sperm penetration of the eutherian zona pellucida is unlikely to be a lytic event. Biol Reprod 59:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Bedford JM (2004) Enigmas of mammalian gamete form and function. Biol Rev Camb Philos Soc 79:429–460

    Article  PubMed  Google Scholar 

  • Bello OD, Zanetti MN, Mayorga LS, Michaut MA (2012) RIM, Munc13, and Rab3A interplay in acrosomal exocytosis. Exp Cell Res 318:478–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmonte SA, Lopez CI, Roggero CM, De Blas GA, Tomes CN, Mayorga LS (2005) Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Dev Biol 285:393–408

    Article  CAS  PubMed  Google Scholar 

  • Berruti G, Ripolone M, Ceriani M (2010) USP8, a regulator of endosomal sorting, is involved in mouse acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Biol Reprod 82:930–939

    Article  CAS  PubMed  Google Scholar 

  • Branham MT, Mayorga LS, Tomes CN (2006) Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway. J Biol Chem 281:8656–8666

    Article  CAS  PubMed  Google Scholar 

  • Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VE, Trevino CL, Darszon A, Mayorga LS, Tomes CN (2009) Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 284(37):24825–24839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD, Barclay JW, Ciufo LF, Graham ME, Handley MT, Morgan A (2009) The functions of Munc18-1 in regulated exocytosis. Ann N Y Acad Sci 1152:76–86

    Article  CAS  PubMed  Google Scholar 

  • Bustos MA, Lucchesi O, Ruete MC, Mayorga LS, Tomes CN (2012) Rab27 and Rab3 sequentially regulate human sperm dense-core granule exocytosis. Proc Natl Acad Sci U S A 109(30):E2057–E2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustos MA, Roggero CM, De la Iglesia PX, Mayorga LS, Tomes CN (2014) GTP-bound Rab3A exhibits consecutive positive and negative roles during human sperm dense-core granule exocytosis. J Mol Cell Biol 6:286–298

    Article  CAS  PubMed  Google Scholar 

  • Carr CM, Rizo J (2010) At the junction of SNARE and SM protein function. Curr Opin Cell Biol 22:488–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo BJ, Roggero CM, Mancifesta FE, Mayorga LS (2010) Calcineurin-mediated dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J Biol Chem 285:26269–26278

    Article  CAS  Google Scholar 

  • Chamberlain LH, Burgoyne RD, Gould GW (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis. Proc Natl Acad Sci U S A 98:5619–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641

    Article  CAS  PubMed  Google Scholar 

  • Chasserot-Golaz S, Coorssen JR, Meunier FA, Vitale N (2010) Lipid dynamics in exocytosis. Cell Mol Neurobiol 30:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97:165–174

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Rubinstein S, Gur Y, Breitbart H (2004) Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation during sperm capacitation. Dev Biol 267:230–241

    Article  CAS  PubMed  Google Scholar 

  • Consonni SV, Gloerich M, Spanjaard E, Bos JL (2012) cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane. Proc Natl Acad Sci U S A 109:3814–3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dacheux JL, Dacheux F (2013) New insights into epididymal function in relation to sperm maturation. Reproduction 147:R27–R42

    Article  PubMed  CAS  Google Scholar 

  • De Blas G, Michaut M, Trevino CL, Tomes CN, Yunes R, Darszon A, Mayorga LS (2002) The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis. J Biol Chem 277:49326–49331

    Article  PubMed  CAS  Google Scholar 

  • De Blas GA, Roggero CM, Tomes CN, Mayorga LS (2005) Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 3, e323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 95:15781–15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flesch FM, Gadella BM (2000) Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim Biophys Acta 1469:197–235

    Article  CAS  PubMed  Google Scholar 

  • Florman HM, Ducibella T (2005) Fertilization in mammals. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction, 3rd edn. Elsevier-Academic Press, San Diego, CA, pp 55–112

    Google Scholar 

  • Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 167:1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda M (2008) Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci 65:2801–2813

    Article  CAS  PubMed  Google Scholar 

  • Furland NE, Oresti GM, Antollini SS, Venturino A, Maldonado EN, Aveldaño MI (2007) Very long-chain polyunsaturated fatty acids are the major acyl groups of sphingomyelins and ceramides in the head of mammalian spermatozoa. J Biol Chem 282:18151–18161

    Article  CAS  PubMed  Google Scholar 

  • Govers R (2014) Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab 40:400–410

    Article  CAS  PubMed  Google Scholar 

  • Graham ME, Handley MT, Barclay JW, Ciufo LF, Barrow SL, Morgan A, Burgoyne RD (2008) A gain-of-function mutant of Munc18-1 stimulates secretory granule recruitment and exocytosis and reveals a direct interaction of Munc18-1 with Rab3. Biochem J 409:407–416

    Article  CAS  PubMed  Google Scholar 

  • Harper CV, Cummerson JA, White MR, Publicover SJ, Johnson PM (2008) Dynamic resolution of acrosomal exocytosis in human sperm. J Cell Sci 121:2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, McMahon H, Yamasaki S, Binz T, Hata Y, Sudhof TC, Niemann H (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Gonzalez EO, Lecona-Valera AN, Escobar-Herrera J, Mujica A (2000) Involvement of an F-actin skeleton on the acrosome reaction in guinea pig spermatozoa. Cell Motil Cytoskeleton 46:43–58

    Article  CAS  PubMed  Google Scholar 

  • Hirohashi N, Gerton GL, Buffone MG (2011) Video imaging of the sperm acrosome reaction during in vitro fertilization. Commun Integr Biol 4:471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honigmann A, van den Bogaart G, Iraheta E, Risselada HJ, Milovanovic D, Mueller V, Mullar S, Diederichsen U, Fasshauer D, Grubmuller H, Hell SW, Eggeling C, Kuhnel K, Jahn R (2013) Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nat Struct Mol Biol 20:679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XQ, Ji SY, Li YC, Fan CH, Cai H, Yang JL, Zhang CP, Chen M, Pan ZF, Hu ZY, Gao F, Liu YX (2010) Acrosome formation-associated factor is involved in fertilization. Fertil Steril 93:1482–1492

    Article  CAS  PubMed  Google Scholar 

  • Hutt DM, Baltz JM, Ngsee JK (2005) Synaptotagmin VI and VIII and Syntaxin 2 are essential for the mouse sperm acrosome reaction. J Biol Chem 280:20197–20203

    Article  CAS  PubMed  Google Scholar 

  • Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R (2011) Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl Acad Sci U S A 108:20008–20011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A 108:4892–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot A, Prochiantz A (2004) Transduction peptides: from technology to physiology. Nat Cell Biol 6:189–196

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Lukanowska M, Suhorutsenko J, Oxenham S, Barratt C, Publicover S, Copolovici DM, Langel U, Howl J (2013) Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility. Hum Reprod 28:1874–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Foster JA, Gerton GL (2001) Differential release of guinea pig sperm acrosomal components during exocytosis. Biol Reprod 64:148–156

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Tanaka H, Nishimune Y (2003) Haprin, a novel haploid germ cell-specific RING finger protein involved in the acrosome reaction. J Biol Chem 278:44417–44423

    Article  CAS  PubMed  Google Scholar 

  • Lam AD, Tryoen-Toth P, Tsai B, Vitale N, Stuenkel EL (2008) SNARE-catalyzed fusion events are regulated by Syntaxin1A-lipid interactions. Mol Biol Cell 19:485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang T, Jahn R (2008) Core proteins of the secretory machinery. Handb Exp Pharmacol 184:107–127

    Article  CAS  PubMed  Google Scholar 

  • Lefkimmiatis K, Moyer MP, Curci S, Hofer AM (2009) “cAMP sponge”: a buffer for cyclic adenosine 3′, 5′-monophosphate. PLoS ONE 4, e7649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez CI, Belmonte SA, De Blas GA, Mayorga LS (2007) Membrane-permeant Rab3A triggers acrosomal exocytosis in living human sperm. FASEB J 21:4121–4130

    Article  CAS  PubMed  Google Scholar 

  • Lopez CI, Pelletan LE, Suhaiman L, De Blas GA, Vitale N, Mayorga LS, Belmonte SA (2012) Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKC- and PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4,5-bisphosphate. Biochim Biophys Acta 1821:1186–1199

    Article  CAS  PubMed  Google Scholar 

  • Lucchesi O, Ruete MC, Bustos MA, Quevedo MF, Tomes CN (2016) The signaling module cAMP/Epac/Rap1/PLCε/IP3 mobilizes acrosomal calcium during sperm exocytosis. Biochim Biophys Acta 1863(4):544–561. doi:10.1016/j.bbamcr.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  • Martin TF (2015) PI(4,5)P2-binding effector proteins for vesicle exocytosis. Biochim Biophys Acta 1851:785–793

    Article  CAS  PubMed  Google Scholar 

  • Masedunskas A, Porat-Shliom N, Weigert R (2012) Regulated exocytosis: novel insights from intravital microscopy. Traffic 13:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayorga L, Tomes CN, Belmonte SA (2007) Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 59:286–292

    Article  CAS  PubMed  Google Scholar 

  • McCullough J, Colf LA, Sundquist WI (2013) Membrane fission reactions of the mammalian ESCRT pathway. Annu Rev Biochem 82:663–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Jones S, Howl J, Lukanowska M, Lefievre L, Publicover S (2015) Cell-penetrating peptides, targeting the regulation of store-operated channels, slow decay of the progesterone-induced [Ca2+]i signal in human sperm. Mol Hum Reprod 21:563–570

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Toole CM, Roldan ER, Hampton P, Fraser LR (1996) A role for diacylglycerol in human sperm acrosomal exocytosis. Mol Hum Reprod 2:317–326

    Article  PubMed  Google Scholar 

  • Okabe M (2013) The cell biology of mammalian fertilization. Development 140:4471–4479

    Article  CAS  PubMed  Google Scholar 

  • Okabe M (2014) Mechanism of fertilization: a modern view. Exp Anim 63:357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oresti GM, Reyes JG, Luquez JM, Osses N, Furland NE, Aveldaño MI (2010) Differentiation-related changes in lipid classes with long-chain and very long-chain polyenoic fatty acids in rat spermatogenic cells. J Lipid Res 51:2909–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oresti GM, Luquez JM, Furland NE, Aveldaño MI (2011) Uneven distribution of ceramides, sphingomyelins and glycerophospholipids between heads and tails of rat spermatozoa. Lipids 46:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Oresti GM, Penalva DA, Luquez JM, Antollini SS, Aveldaño MI (2015) Lipid biochemical and biophysical changes in rat spermatozoa during isolation and functional activation in vitro. Biol Reprod 93:140

    Article  PubMed  Google Scholar 

  • Pang ZP, Sudhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 22:496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Seo JB, Fraind A, Perez-Lara A, Yavuz H, Han K, Jung SR, Kattan I, Walla PJ, Choi M, Cafiso DS, Koh DS, Jahn R (2015) Synaptotagmin-1 binds to PIP2-containing membrane but not to SNAREs at physiological ionic strength. Nat Struct Mol Biol 22:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlos NJ, Gronborg M, Riedel D, Chua JJ, Boyken J, Kloepper TH, Urlaub H, Rizzoli SO, Jahn R (2010) Quantitative analysis of synaptic vesicle Rabs uncovers distinct yet overlapping roles for Rab3a and Rab27b in Ca2+-triggered exocytosis. J Neurosci 30:13441–13453

    Article  CAS  PubMed  Google Scholar 

  • Pelletan LE, Suhaiman L, Vaquer CC, Bustos MA, De Blas GA, Vitale N, Mayorga LS, Belmonte SA (2015) ADP Ribosylation Factor 6 (ARF6) Promotes Acrosomal Exocytosis by Modulating Lipid Turnover and Rab3A Activation. J Biol Chem 290:9823–9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petcoff DW, Holland WL, Stith BJ (2008) Lipid levels in sperm, eggs, and during fertilization in Xenopus laevis. J Lipid Res 49:2365–2378

    Article  CAS  PubMed  Google Scholar 

  • Pocognoni CA, De Blas GA, Heuck AP, Belmonte SA, Mayorga LS (2013) Perfringolysin O as a useful tool to study human sperm physiology. Fertil Steril 99:99–106

    Article  CAS  PubMed  Google Scholar 

  • Pocognoni CA, Berberian MV, Mayorga LS (2015) ESCRT (Endosomal Sorting Complex Required for Transport) machinery is essential for acrosomal exocytosis in human sperm. Biol Reprod 93:124

    Article  PubMed  CAS  Google Scholar 

  • Porat-Shliom N, Milberg O, Masedunskas A, Weigert R (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 70:2099–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyenta PS, Holowka D, Baird B (2001) Cross-correlation analysis of inner-leaflet-anchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components. Biophys J 80:2120–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Sudhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–133

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices—guilty as charged? Annu Rev Cell Dev Biol 28:279–308

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Xu J (2015) The synaptic vesicle release machinery. Annu Rev Biophys 44:339–367

    Article  CAS  PubMed  Google Scholar 

  • Rizzoli SO, Jahn R (2007) Kiss-and-run, collapse and ‘readily retrievable’ vesicles. Traffic 8:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, Bustos MA, Zanetti MN, Ruete MC, Mayorga LS, Tomes CN (2011) alpha-SNAP prevents docking of the acrosome during sperm exocytosis because it sequesters monomeric syntaxin. PLoS ONE 6, e21925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez F, Zanetti MN, Mayorga LS, Tomes CN (2012) Munc18-1 controls SNARE protein complex assembly during human sperm acrosomal exocytosis. J Biol Chem 287:43825–43839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roggero CM, Tomes CN, De Blas GA, Castillo J, Michaut MA, Fukuda M, Mayorga LS (2005) Protein kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis. Dev Biol 285:422–435

    Article  CAS  PubMed  Google Scholar 

  • Roggero CM, De Blas GA, Dai H, Tomes CN, Rizo J, Mayorga LS (2007) Complexin/synaptotagmin interplay controls acrosomal exocytosis. J Biol Chem 282:26335–26343

    Article  CAS  PubMed  Google Scholar 

  • Roldan ER, Shi QX (2007) Sperm phospholipases and acrosomal exocytosis. Front Biosci 12:89–104

    Article  CAS  PubMed  Google Scholar 

  • Ruete MC, Lucchesi O, Bustos MA, Tomes CN (2014) Epac, Rap and Rab3 act in concert to mobilize calcium from sperm inverted question marks acrosome during exocytosis. Cell Commun Signal 12:43

    PubMed  PubMed Central  Google Scholar 

  • Sanchez-Cardenas C, Servin-Vences MR, Jose O, Trevino CL, Hernandez-Cruz A, Darszon A (2014) Acrosome reaction and Ca2+ imaging in single human spermatozoa: new regulatory roles of [Ca2+]i. Biol Reprod 91:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweizer FE, Dresbach T, DeBello WM, O’Connor V, Augustine GJ, Betz H (1998) Regulation of neurotransmitter release kinetics by NSF. Science 279:1203–1206

    Article  CAS  PubMed  Google Scholar 

  • Scott CC, Vacca F, Gruenberg J (2014) Endosome maturation, transport and functions. Semin Cell Dev Biol 31:2–10

    Article  CAS  PubMed  Google Scholar 

  • Seven AB, Brewer KD, Shi L, Jiang QX, Rizo J (2013) Prevalent mechanism of membrane bridging by synaptotagmin-1. Proc Natl Acad Sci U S A 110:E3243–E3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shitara A, Weigert R (2015) Imaging membrane remodeling during regulated exocytosis in live mice. Exp Cell Res 337:219–225

    Article  CAS  PubMed  Google Scholar 

  • Slochower DR, Wang YH, Tourdot RW, Radhakrishnan R, Janmey PA (2014) Counterion-mediated pattern formation in membranes containing anionic lipids. Adv Colloid Interface Sci 208:177–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollner TH (2003) Regulated exocytosis and SNARE function. Mol Membr Biol 20:209–220

    Article  PubMed  CAS  Google Scholar 

  • Sosa CM, Pavarotti MA, Zanetti MN, Zoppino FC, De Blas GA, Mayorga LS (2015) Kinetics of human sperm acrosomal exocytosis. Mol Hum Reprod 21:244–254

    Article  CAS  PubMed  Google Scholar 

  • Sosa CM, Zanetti MN, Pocognoni CA, Mayorga LS (2016) Acrosomal swelling is triggered by cAMP downstream of the opening of store-operated calcium channels during acrosomal exocytosis in human sperm. Biol Reprod 94(3):57. doi:10.1095/biolreprod.115.133231

    Article  PubMed  Google Scholar 

  • Stahl B, von Mollard GF, Walch-Solimena C, Jahn R (1994) GTP cleavage by the small GTP-binding protein Rab3A is associated with exocytosis of synaptic vesicles induced by alpha-latrotoxin. J Biol Chem 269:24770–24776

    CAS  PubMed  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  PubMed  Google Scholar 

  • Stith BJ (2015) Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 401:188–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sumigama S, Mansell S, Miller M, Lishko PV, Cherr GN, Meyers SA, Tollner T (2015) Progesterone accelerates the completion of sperm capacitation and activates CatSper channel in spermatozoa from the Rhesus macaque. Biol Reprod 93:130

    Article  PubMed  Google Scholar 

  • Tolmachova T, Anders R, Stinchcombe J, Bossi G, Griffiths GM, Huxley C, Seabra MC (2004) A general role for Rab27a in secretory cells. Mol Biol Cell 15:332–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomes CN (2007) Molecular mechanisms of membrane fusion during acrosomal exocytosis. Soc Reprod Fertil Suppl 65:275–291

    CAS  PubMed  Google Scholar 

  • Tomes CN (2015) The proteins of exocytosis: lessons from the sperm model. Biochem J 465:359–370

    Article  CAS  PubMed  Google Scholar 

  • Travis AJ, Merdiushev T, Vargas LA, Jones BH, Purdon MA, Nipper RW, Galatioto J, Moss SB, Hunnicutt GR, Kopf GS (2001) Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev Biol 240:599–610

    Article  CAS  PubMed  Google Scholar 

  • Tsai PS, De Vries KJ, De Boer-Brouwer M, Garcia-Gil N, Van Gestel RA, Colenbrander B, Gadella BM, Van Haeften T (2007) Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells. Mol Membr Biol 24:313–324

    Article  CAS  PubMed  Google Scholar 

  • Tsai PS, Garcia-Gil N, Van Haeften T, Gadella BM (2010) How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane. PLoS ONE 5, e11204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuboi T, Fukuda M (2005) The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 280:39253–39259

    Article  CAS  PubMed  Google Scholar 

  • van den Bogaart G, Lang T, Jahn R (2013) Microdomains of SNARE proteins in the plasma membrane. Curr Top Membr 72:193–230

    Article  PubMed  CAS  Google Scholar 

  • van den Boggart G, Meyenberg K, Diederichsen U, Jahn R (2012) Phosphatidylinositol 4,5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold. J Biol Chem 287:16447–16453

    Article  CAS  Google Scholar 

  • Verhage M, Sorensen JB (2008) Vesicle docking in regulated exocytosis. Traffic 9:1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE (2009) Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci U S A 106:667–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale N (2010) Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. Biochem Soc Trans 38:167–171

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Binz T, Niemann H, Neher E (1998) Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci 1:192–200

    Article  CAS  PubMed  Google Scholar 

  • Xue R, Zhao Y, Chen P (2009) Involvement of PKC alpha in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells. Biochem Biophys Res Commun 380:371–376

    Article  CAS  PubMed  Google Scholar 

  • Yunes R, Michaut M, Tomes C, Mayorga LS (2000) Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol Reprod 62:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Zanetti N, Mayorga LS (2009) Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol Reprod 81:396–405

    Article  CAS  PubMed  Google Scholar 

  • Zanetti SR, de Los Angeles MM, Rensetti DE, Fornes MW, Aveldaño MI (2010) Ceramides with 2-hydroxylated, very long-chain polyenoic fatty acids in rodents: From testis to fertilization-competent spermatozoa. Biochimie 92:1778–1786

    Article  CAS  PubMed  Google Scholar 

  • Zarelli VE, Ruete MC, Roggero CM, Mayorga LS, Tomes CN (2009) PTP1B dephosphorylates N-ethylmaleimide-sensitive factor and elicits SNARE complex disassembly during human sperm exocytosis. J Biol Chem 284:10491–10503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zick M, Stroupe C, Orr A, Douville D, Wickner WT (2014) Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. Elife 3, e01879

    PubMed  Google Scholar 

  • Zoppino FC, Halon ND, Bustos MA, Pavarotti MA, Mayorga LS (2012) Recording and sorting live human sperm undergoing acrosome reaction. Fertil Steril 97:1309–1315

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia N. Tomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belmonte, S.A., Mayorga, L.S., Tomes, C.N. (2016). The Molecules of Sperm Exocytosis. In: Buffone, M. (eds) Sperm Acrosome Biogenesis and Function During Fertilization. Advances in Anatomy, Embryology and Cell Biology, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-30567-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30567-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30565-3

  • Online ISBN: 978-3-319-30567-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics