Skip to main content

Biophysical Effects of Tumor Treating Fields

  • Chapter
  • First Online:
Alternating Electric Fields Therapy in Oncology

Abstract

The effects of applied electric fields on biological cells have been a frequently discussed topic within the last decades. Analytical descriptions and theoretical investigations lead to numerous cell characterization and manipulation techniques which were translated into clinical applications. Low-frequency alternating current (AC) fields are employed for nerve and muscle stimulation, while high-frequency fields find medical relevance in tissue heating or tumor ablation. The biological effects of intermediate frequency fields in the kHz region have just recently being discovered. One evolving technique is a cancer treatment modality called Tumor Treating Fields (TTFields) that makes use of the characteristic antimitotic effect of low-intensity (1 to 3 V/cm) and intermediate-frequency (100 to 300 kHz) AC fields. Computational modeling can be used to predict the electric field distribution in and around the quiescent and dividing cell due to the application of an AC field with a frequency in this intermediate region. Our results confirmed several predicted outcomes of TTField application. During metaphase a nonzero intracellular field strength E i is induced in the cell. The frequency above which E i approaches the extracellular field strength depends on the cell’s dielectric properties. During cytokinesis a non-uniform E i is induced, with increased strength at the furrow. Frequency, cell size, and cell shape dependencies were confirmed. Future insights into the biophysical effects of alternating electric fields may be gained through computational modeling at the subcellular level or at the level of cell assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grosse C, Schwan HP. Cellular membrane potentials induced by alternating fields. Biophys J. 1992;63(6):1632–42.

    Google Scholar 

  2. Schwan HP. Mechanisms responsible for electrical properties of tissues and cell suspensions. Med Prog Technol. 1993-1994;19(4):163–5.

    Google Scholar 

  3. Laufer S, Ivorra A, Reuter VE, Rubinsky B, Solomon SB. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol Meas. 2010;31(7):995–1009.

    Article  PubMed  Google Scholar 

  4. Gimsa J. A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry. 2001;54(1):23–31.

    Google Scholar 

  5. Markx GH. The use of electric fields in tissue engineering: a review. Organogenesis. 2008;4(1):11–7.

    Google Scholar 

  6. Malmivuo J, Plonsey R. Bioelectromagnetism. New York: Oxford University Press; 1995.

    Google Scholar 

  7. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288–95.

    Google Scholar 

  8. Wenger C, Miranda PC, Salvador R, Basser PJ. Investigating the mechanisms of action of tumor treating fields: a computational modeling study. Neuro-Oncol. 2014;16 Suppl 5:v216.

    Google Scholar 

  9. Taghian T, Narmoneva DA, Kogan AB. Modulation of cell function by electric field: a high-resolution analysis. J R Soc Interface. 2015;12(107):pii: 20150153.

    Article  Google Scholar 

  10. Liang J, Mok AW, Zhu Y, Shi J. Resonance versus linear responses to alternating electric fields induce mechanistically distinct mammalian cell death. Bioelectrochemistry. 2013;94:61–8.

    Google Scholar 

  11. Uppalapati M, Huang Y-M, Jackson TN, Hancock WO. Microtubule alignment and manipulation using AC electrokinetics. Small. 2008;4(9):1371–81.

    Google Scholar 

  12. Wenger C, Giladi M, Bomzon Z, Salvador R, Basser PJ, Miranda PC. Modeling Tumor Treating Fields (TTFields) application in single cells during metaphase and telophase. Engineering in Medicine and Biology Society (EMBC), 2015. 37th Annual International Conference of the IEEE, 2015. p. 6892–5.

    Google Scholar 

  13. Kirson ED, Dbalý V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci U S A. 2007;104(24):10152–7.

    Google Scholar 

  14. Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturbs the localization of septins and cause aberrant mitotic exit. PLoS One. 2015;10:e0125269.

    Google Scholar 

  15. Giladi M, Schneiderman RS, Voloshin T, Porat Y, Munster M, Blat R, et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci Rep 2015;5:18046.

    Google Scholar 

  16. Giladi M, Porat Y, Blatt A, Wasserman Y, Kirson ED, Dekel E, et al. Microbial growth inhibition by alternating electric fields. Antimicrob Agents Chemother. 2008;52(10):3517–22.

    Google Scholar 

  17. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48(14):2192–202.

    Google Scholar 

  18. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314:2535-43.

    Google Scholar 

  19. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm465744.htm

  20. Boucrot E, Kirchhausen T. Mammalian cells change volume during mitosis. PLoS One. 2008;3(1):1477.

    Google Scholar 

  21. Habela CW, Sontheimer H. Cytoplasmic volume condensation is an integral part of mitosis. Cell Cycle. 2007;6(13):1613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stewart DA, Gowrishankar TR, Smith KC, Weaver JC. Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method. IEEE Trans Biomed Eng. 2005;52(10):1643–53.

    Google Scholar 

  23. Kotnik T, Miklavčič D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J. 2006;90(2):480–91.

    Google Scholar 

  24. Pavlin M, Miklavčič D. The effective conductivity and the induced transmembrane potential in dense cell system exposed to DC and AC electric fields. IEEE Trans Plasma Sci. 2009;37(1):99–106.

    Article  CAS  Google Scholar 

  25. Gowrishankar TR, Weaver JC. An approach to electrical modeling of single and multiple cells. Proc Natl Acad Sci U S A. 2003;100(6):3203–8.

    Google Scholar 

  26. Kotnik T, Miklavčič D. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J. 2000;79(2):670–9.

    Google Scholar 

  27. Gowrishankar TR, Stewart DA, Weaver JC. Model of a confined spherical cell in uniform and heterogeneous applied electric fields. Bioelectrochemistry. 2006;68(2):181–90.

    Google Scholar 

  28. Vajrala V, Claycomb JR, Sanabria H, Miller JH. Effects of oscillatory electric fields on internal membranes: an analytical model. Biophys J. 2008;94(6):2043–52.

    Google Scholar 

  29. Tiwari PK, Kang SK, Kim GJ, Choi J, Mohamed A-AH, Lee JK. Modeling of nanoparticle-mediated electric field enhancement inside biological cells exposed to AC electric fields. Jpn J Appl Phys. 2009;48(8):087001.

    Google Scholar 

  30. Kotnik T, Bobanović F, Miklavčič D. Sensitivity of transmembrane voltage induced by applied fields—a theoretical analysis. Bioelectrochem Bioenerg. 1997;43(43):285–91.

    Google Scholar 

  31. Kotnik T, Miklavčič D. Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans Biomed Eng. 2000;47(8):1074–81.

    Article  CAS  PubMed  Google Scholar 

  32. Hölzel R, Lamprecht I. Dielectric properties of yeast cells as determined by electrorotation. Biochim Biophys Acta. 1992;1104(1):195–200.

    Google Scholar 

  33. Gascoyne PR, Pethig R, Burt JP, Becker FF. Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis. Biochim Biophys Acta. 1993;1149(1):119–26.

    Google Scholar 

  34. Hu X, Arnold WM, Zimmermann U. Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells. Biochim Biophys Acta. 1990;1021(2):191–200.

    Google Scholar 

  35. Ye H, Cotic M, Kang EE, Fehlings MG, Carlen PL. Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study. J Neuroeng Rehabil. 2010;7:12.

    Google Scholar 

  36. Ye H, Cotic M, Fehlings MG, Carlen PL. Influence of cellular properties on the electric field distribution around a single cell. Prog Electromagn Res B. 2012;39:141–61.

    Article  Google Scholar 

  37. Hild W, Tasaki I. Morphological and physiological properties of neurons and glial cells in tissue culture. J Neurophysiol. 1962;25:277–304.

    CAS  PubMed  Google Scholar 

  38. Trachtenberg MC, Kornblith PL, Häuptli J. Biophysical properties of cultured human glial cells. Brain Res. 1972;38:279–98.

    Article  CAS  PubMed  Google Scholar 

  39. Somjen GG. Electrophysiology of neuroglia. Annu Rev Physiol. 1975;37(171):163–90.

    Google Scholar 

  40. Bédard C, Kröger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J. 2004;86(3):1829–42.

    Google Scholar 

  41. Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer Associates Inc., 1992.

    Google Scholar 

  42. Pohl HA. Dielectrophoresis. Cambridge, UK: Cambridge University Press, 1978.

    Google Scholar 

  43. Sun T, Morgan H, Green N. Analytical solutions of ac electrokinetics in interdigitated electrode arrays: electric field, dielectrophoretic and traveling-wave dielectrophoretic forces. Phys Rev E. 2007;76(4):046610.

    Google Scholar 

  44. Jones TB. Basic theory of dielectrophoresis and electrorotation. Eng Med Biol Mag IEEE. 2003;22(6):33–42.

    Article  Google Scholar 

  45. Giladi M, Schneiderman RS, Porat Y, Munster M, Itzhaki A, Mordechovich D, et al. Mitotic disruption and reduced clonogenicity of pancreatic cancer cells in vitro and in vivo by tumor treating fields. Pancreatology. 2014;14(1):54–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Wenger Dr.techn. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wenger, C., Miranda, P.C. (2016). Biophysical Effects of Tumor Treating Fields. In: Wong, E. (eds) Alternating Electric Fields Therapy in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-30576-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30576-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30574-5

  • Online ISBN: 978-3-319-30576-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics