Skip to main content

Novel Therapies for the Prevention and Management of Acute Decompensated Heart Failure

  • Chapter
  • First Online:
Pharmacologic Trends of Heart Failure

Part of the book series: Current Cardiovascular Therapy ((CCT))

  • 986 Accesses

Abstract

Acute decompensated heart failure continues to be a leading cause of hospital admissions in the U.S. and is the leading cause of hospitalization in patients >65 years of age [1]. Over the past three decades significant advances in understanding the complex pathophysiology has lead to the development of medical therapies that have improved outcome, unfortunately the overall mortality rate remains staggeringly high, 50 % at 5 years [2]. Hospitalizations for acute decompensated heart failure (ADHF) are a huge burden to the already over taxed health care system. Even with the advances in the medical therapies, the 30-day readmission rate for ADHF is 25 % [3]. While the management of chronic stable heart failure has progressed, the management strategies and therapies for ADHF have changed little in the same time period [4]. The mainstay therapies for the management of ADHF are focused on rapidly improving symptoms of dyspnea, peripheral edema and decongesting the patient. Intravenous diuretics are recommended for decongestion and volume removal in all patients with evidence of significant volume overload. Concomitant use of IV vasodilators (nitroprusside, nitroglycerin and neseritide) in patients without evidence of hypotension can aid in decongestion and improve symptoms. In patients with reduced EF and evidence of decreased perfusion and hemodynamic compromise, intravenous inotropes can be used to improve and maintain cardiac output and end-organ perfusion. However none of the therapies have been shown to improve (and may actually increase) morbidity and mortality [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Moazffarian D, Roger VL, et al. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.

    Article  PubMed  Google Scholar 

  2. Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community based population. JAMA. 2004;292:344–50.

    Article  CAS  PubMed  Google Scholar 

  3. Krumholz HM, Merrill AR, Schome EM, et al. Patterns of hospital performance in acute myocardial infarction and heart failure 30-day mortality and readmission. Circ Cardiovasc Qual Outcomes. 2009;2:407–13.

    Article  PubMed  Google Scholar 

  4. 2013 ACCF/AHA guideline for the management of heart failure. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–327.

    Google Scholar 

  5. Alraies MC, Tran B, Adatya S. Inotropes are linked to increased mortality in heart failure. VAD J. 1. 2015. doi:http://dx.doi.org/10.130023/VAD.2015.08.

  6. Wiemer G, Scholkens BA, Becker RH, et al. Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium- derived bradykinin. Hypertension. 1991;18:558–63.

    Article  CAS  PubMed  Google Scholar 

  7. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316:1429–35.

    Article  Google Scholar 

  8. Margulies KB, Barclay PL, Burnett Jr JC. The role of neutral endopeptidase in dogs with evolving congestive heart failure. Circulation. 1995;91:2036–42.

    Article  CAS  PubMed  Google Scholar 

  9. Ferro CJ, Spratt JC, Haynes WG, Webb DJ. Inhibition of neutral endopeptidase causes vasoconstriction of human resistance vessels in vivo. Circulation. 1998;97:2323–30.

    Article  CAS  PubMed  Google Scholar 

  10. Trippodo NC, Robl JA, Asaad MM, Fox M, Panchal BC, Schaeffer TR. Effects of omapatrilat in low, normal, and high renin experimental hypertension. Am J Hypertens. 1998;11(3 Pt 1):363.

    Article  CAS  PubMed  Google Scholar 

  11. Bevan EG, Connell JM, Doyle J, Carmichael HA, Davies DL, Lorimer AR, McInnes GT. Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension. J Hypertens. 1992;10:607–13.

    Article  CAS  PubMed  Google Scholar 

  12. Trippodo NC, Fox M, Monticello TM, et al. Vasopeptidase inhibition with omapatrilat improves cardiac geometry and survival in cardiomyo-pathic hamsters more than does ACE inhibition with captopril. J Cardiovasc Pharmacol. 1999;34:782–90.

    Article  CAS  PubMed  Google Scholar 

  13. McDowell G, Nicholls DP. The endopeptidase inhibitor, candoxatril, and its therapeutic potential in the treatment of chronic cardiac failure in man. Expert Opin Investig Drugs. 1999;8:79–84.

    Article  CAS  PubMed  Google Scholar 

  14. Kostis JB, Packer M, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hyperten. 2004;17:103–11.

    Article  CAS  Google Scholar 

  15. Asmar R, Fredebohm W, Senftleber I, et al. Omapatrilat compared with lisinopril in treatment of hypertension as assessed by ambulatory blood pressure monitoring. J Hypertens. 2000;18:S95.

    Article  Google Scholar 

  16. Norton GR, Woodiwiss AJ, Hartford C, Trifunovic B, Middlemost S, Lee A, Allen MJ. Sustained antihypertensive actions of a dual angiotensin-converting enzyme neutral endopeptidase inhibitor, sampatrilat, in black hypertensive subjects. Am J Hypertens. 1999;12(6):563.

    Article  CAS  PubMed  Google Scholar 

  17. Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau J-L, Swedberg K. Comparison of omapatrilat and enalapril in patients with chronic heart failure. The omapatrilat versus enalapril randomized trial of utility in reducing events (OVERTURE). Circulation. 2002;106:920–6.

    Article  CAS  PubMed  Google Scholar 

  18. Rouleau JL, Pfeffer MA, Stewart DJ, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet. 2000;356:615–20.

    Article  CAS  PubMed  Google Scholar 

  19. Molinaro G, Carmona AK, Juliano MA, Juliano L, Malitskaya E, Yessine MA, Chagnon M, Lepage Y, Simmons WH, Boileau G, Adam A. Human recombinant membrane-bound aminopeptidase P: production of a soluble form and characterization using novel, internally quenched fluorescent substrates. Biochem J. 2005;385(Pt 2):389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, et al; for the PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    Google Scholar 

  21. Gottlieb SS, Stebbins A, Voors AA, et al. Effects of neseritide and predictors of urine output in acute decompensated heart failure: results from the ASCEND-HF (acute study of clinical effectiveness of neseritide and decompensated heart failure). J Am Coll Cardiol. 2013;62:1177–83.

    Article  CAS  PubMed  Google Scholar 

  22. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: pooled analysis of randomized controlled trials. JAMA. 2005;293:1900–5.

    Article  CAS  PubMed  Google Scholar 

  23. Koller KJ, Goeddel DV. Molecular biology if the natriuretic peptides and their receptors. Circulation. 1992;86:1081–8.

    Article  CAS  PubMed  Google Scholar 

  24. Suttner S, Boldt J. Natriuretic peptide system: physiology and clinical utility. Curr Opin Crit Care. 2004;10:336–41.

    Article  PubMed  Google Scholar 

  25. Bestle MH, Olsen NV, Christensen P, Jensen BV, Bie P. Cardiovascular, endocrine and renal effects of urodilantin in normal humans. Am J Physiol. 1999;276(45):R684–95.

    CAS  PubMed  Google Scholar 

  26. Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes pre-glomerular vasodilation and post-glomerular vasoconstriction in rat kidney. Nature. 1986;324:473–5.

    Article  CAS  PubMed  Google Scholar 

  27. Baughman KL. B-type natriuretic peptide – a window to the heart. N Engl J Med. 2002;347:158–9; Stein BC, Levin RI. Natriuretic peptides: physiology, therapeutic potential and risk stratification in ischemic heart disease. Am Heart J. 1998;135:14–23.

    Google Scholar 

  28. Levin ER, Gardner DG, Smason WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8.

    Article  CAS  PubMed  Google Scholar 

  29. George M, Rajaram M, Shanmugam E, VijayaKumar TM. Novel drug targets in clinical development for heart failure. Eur J Clin Pharmacol. 2014;70:765–74.

    Article  CAS  PubMed  Google Scholar 

  30. deGoma EM, Vagelos RH, Fowler MB, Ashley EA. Emerging therapies for the management of decompensated heart failure. J Am Coll Cardiol. 2006;48:2397–409.

    Article  CAS  PubMed  Google Scholar 

  31. Hata N, et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure – the PROTECT multicenter randomized controlled study. Circ J. 2008;72:1787–93.

    Article  CAS  PubMed  Google Scholar 

  32. Mizutami T, et al. Comparison of nitrite compounds and carperitide for initial treatment of acute decompensated heart failure. Int Heart J. 2011;52:114–8.

    Article  Google Scholar 

  33. Hattori H, et al. Differences in hemodynamic responses between intravenous carperitide and nicorandil in patients with acute decompensated heart failure syndromes. Heart Vessels. 2013;28:345–51.

    Article  PubMed  Google Scholar 

  34. Nomura F, et al. Multicenter prospective investigation on efficacy and safety of carperitide as a first-line drug for acute heart failure syndrome with preserved blood pressure – COMPASS. Circ J. 2008;72:1777–86.

    Article  CAS  PubMed  Google Scholar 

  35. Suwa M, et al. Mutlicenter prospective investigation on efficacy and safety of carperitide for acute heart failure in the ‘real world’ of therapy. Circ J. 2005;69:283–90.

    Article  PubMed  Google Scholar 

  36. Shculz-Knappe P, et al. Isolation and structural analysis of “urodilatin”, a new peptide of the cardiodilantin-(ANP)-family, extracted from human urine. Kilm Wochenschr. 1988;66:752–9.

    Article  Google Scholar 

  37. Kentsch M, et al. Hemodynamic and renal effects of urodilatin bolus injections in patients with congestive heart failure. Eur J Clin Invest. 1992;22(10):662–9.

    Article  CAS  PubMed  Google Scholar 

  38. Elsner D, et al. Efficacy of prolonged infusion of urodilantin [ANP-(95-126)] in patients with congestive heart failure. Am Heart J. 1995;129:766–73.

    Article  CAS  PubMed  Google Scholar 

  39. Mitrovic V, et al. Effects of the renal natriuretic peptide urodilantin (ularitide) in patients with decompensated chronic heart failure: a double-blind, placebo-controlled, ascending-dose trial. Am Heart J. 2005;150:1239e.1–8.

    Article  Google Scholar 

  40. Mitrovic V, et al. Hemodynamic and clinical effects of ularitide in decomensated heart failure. Eur Heart J. 2006;27:2823–23832.

    Article  CAS  PubMed  Google Scholar 

  41. Luss H, et al. Renal effects of ularitide in patients with decompensated heart failure. Am Heart J. 2008;155:1012.e1–8.

    Article  Google Scholar 

  42. Fevold HL, Hisaw FL, Meyer RK. The relaxative hormone of the corpus luteum. Its purification and concentration. J Am Chem Soc. 1930;106(3):3340–8.

    Article  Google Scholar 

  43. Eyabalan A, Shroff SG, Novak J, et al. The vascular actions of relaxin. Adv Exp Med Biol. 2007;612:65–87.

    Article  Google Scholar 

  44. Teichman SL. Relaxin, a pleiotropic vasodilator for the treatment of heart failure. Heart Fail Rev. 2009;14:321–9.

    Article  CAS  PubMed  Google Scholar 

  45. Teichman SL. Relaxin: review of biology and potential role in treating heart failure. Cur Heart Fail Rep. 2010;7:75–82.

    Article  CAS  Google Scholar 

  46. Hsu SY, Nakabayashi K, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;295:671–4.

    Article  CAS  PubMed  Google Scholar 

  47. Dschietzig T, Barsch C, Richter C, et al. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist. Circ Res. 2003;92:32–40.

    Article  CAS  PubMed  Google Scholar 

  48. Matthews JE, Rubin JP, Noval J, et al. Relaxin (Rix) induces fast relaxation in some rat and human arteries mediated by P13 kinase and nitric oxide. Reprod Sci. 2007;14(1 Suppl):114A.

    Google Scholar 

  49. Metra M, Teerlink JR, Felker GM, Greenberg BH, et al. Dsypnoea and worsening heart failure in patients with acute heart failure: results from the Pre-RELAX-AHF Study. Eur J Heart Fail. 2010;12:1130–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Teerlink JR, Cotter G, Davidson BA, Felker GM, Filippatos G, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomized, placebo-controlled trial. Lancet. 2013;381:29–39.

    Article  CAS  PubMed  Google Scholar 

  51. Micheletti R, Palazzo F, Barassi P, et al. Istaroxime, a stimulator of sarcoplasmic reticulum calcium adenosine triphosphate isoform 2a activity, as a novel therapeutic approach to heart failure. Am J Cardiol. 2007;99(Suppl):24A–34.

    Article  CAS  PubMed  Google Scholar 

  52. Braunwald E. Heart failure. J Am Coll Cardiol HF. 2013;1:1–20.

    Article  Google Scholar 

  53. Aditya S, Rattan A. Istaroxime: a rising star in acute heart failure. J Pharmacol Pharmacother. 2012;3(4):353–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Belevych AE, Terentyev D, Terentyeva R, et al. The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res. 2011;90:493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen Y, Escoubet B, Prunier F, et al. Constitutive cardiac over-expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase delays myocardial failure after myocardial infarction in rats at a cost of increase acute arrhythmias. Circulation. 2004;109:1898–903.

    Article  CAS  PubMed  Google Scholar 

  56. El-Armouche A, Eschenhagen T. β-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev. 2009;14:225–41.

    Article  CAS  PubMed  Google Scholar 

  57. Weber CR, Piacentino III V, Houser SR, Bers DM. Dynamic regulation of sodium/calcium exchange function of failing human myocardium. Circulation. 2003;108:2224–9.

    Article  CAS  PubMed  Google Scholar 

  58. Micheletti R, Palazzo F, Barassi P, et al. Istaroxime, a stimulator of sarcoplasmic reticulum calcium adenosine triphosphatase isoform 2a activity, as a novel therapeutic approach to heart failure. Am J Cardiol. 2007;99(Suppl):24A–34.

    Google Scholar 

  59. Mattera GG, Giudice PL, Loi FM, et al. Istaroxime: a new luso-inotropic agent for heart failure. Am J Cardiol. 2007;99(Suppl):33A–40.

    Article  CAS  PubMed  Google Scholar 

  60. Sabbah HN, Imai M, Cowart D, et al. Hemodynamic properties of a new-generation positive luso-inotropic agent for the acute treatment of advanced heart failure. Am J Cardiol. 2007;99(Suppl):41A–6.

    Article  CAS  PubMed  Google Scholar 

  61. Gheorghiade M, Blair JE, Filippatos GS, Macarie C, Ruzyllo W, et al; for the HORIZON-HF Investigators. Hemodynamic, Echocardiographic, and Neurohormonal Effects of Istaroxime, a Novel Intravenous Inotropic and Lusitropic Agent A Randomized Controlled Trial in Patients Hospitalized With Heart Failure. J Am Coll Cardiol. 2008;51:2276–85.

    Google Scholar 

  62. Shah SJ, Blair JE, Filippatos GS, Mecarie C, et al; for the HORIZON-HF Investigators. Effects of istaroxime on diastolic stiffness in acute heart failure syndrome: results from the Hemodynamic, Echocardiographic, and Neurohormonal Effects of Istaroxime, a Novel Intravenous Inotropic and Lusitropic Agent A Randomized Controlled Trial in Patients Hospitalized With Heart Failure. Am Heart J. 2009;157:1035–41.

    Google Scholar 

  63. Adamson PR, Vanoli E, Mattera GC, et al. Hemodynamic effects of a new inotropic compound, PST-2744, in dogs with chronic ischemic heart failure. J Cardiovasc Pharmacol. 2003;42:169–73.

    Article  CAS  PubMed  Google Scholar 

  64. Colucci WS, Wright RF, Braunwald E. New positive inotropic agents in the treatment of congestive heart failure: mechanisms of action and recent clinical developments. N Engl J Med. 1986;314:349–58.

    Article  CAS  PubMed  Google Scholar 

  65. Ferrick KJ, Fein SA, Ferrick AM, et al. Effect of milrinone on ventricular arrhythmias in congestive heart failure. Am J Cardiol. 1990;66:431–4.

    Article  CAS  PubMed  Google Scholar 

  66. Parissis JT, Rafouli-Stergiou P, Paraskevaidis I, Mebazaa A. Levosimendan: from basic science to clinical practice. Heart Fail Rev. 2009;14:265–75.

    Article  CAS  PubMed  Google Scholar 

  67. Antoniades C, Tousoulis D, Koumallos N, Marinou K, Stefanadis C. Levosimendan: beyond its simple inotropic effect in heart failure. Pharmacol Ther. 2007;114:184–97.

    Article  CAS  PubMed  Google Scholar 

  68. Sorsa T, Heikkinen S, Abbott MB, et al. Binding of levosimendan, a calcium sensitizer, to cardiac troponin C. J Biol Chem. 2001;276:9337–43.

    Article  CAS  PubMed  Google Scholar 

  69. Michaels AD, McKeown B, Kostal M, Vakharia KT, Jordan MV, et al. Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress and myocardial oxygen uptake. Circulation. 2005;111:1504–9.

    Article  CAS  PubMed  Google Scholar 

  70. Givertz MM, Andreou C, Conrad CH, Colucci WS. Direct myocardial effects of levosimendan in humans with left ventricular dysfunction: alteration of force-frequency and relaxation-frequency relationships. Circulation. 2007;115:1218–24.

    CAS  PubMed  Google Scholar 

  71. Yokoshiki H, Katsube Y, Sunagawa M, et al. Levosimendan, a novel Ca 2 sensitizer, activates the glibenclamide-sensitive K-channel in rat arterial myocytes. Eur J Pharmacol. 1997;333:249–59.

    Article  CAS  PubMed  Google Scholar 

  72. Kivikko M, Antila S, Eha J, Lehtonen L, Pentikäinen PJ. Pharmacokinetics of levosimendan and its metabolites during and after a 24-hour continuous infusion in patients with severe heart failure. Int J Clin Pharm Ther. 2002;40:465–71.

    Article  CAS  Google Scholar 

  73. Illeberg J, Laine M, Palkama T, Kivikko M, Pohjanjousi P, Kupari M. Duration of the haemodynamic action of a 24-h infusion of levosimendan in patients with congestive heart failure. Eur J Heart Fail. 2007;9:75–82.

    Article  Google Scholar 

  74. Nieminen MS, Akkila J, Hasenfuss G, et al. Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J Am Coll Cardiol. 2000;36:1903–12.

    Article  CAS  PubMed  Google Scholar 

  75. Slawsky MT, Colucci WS, Gottlieb SS, et al; for the Study Investigators. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Circulation. 2000;102:2222–7.

    Google Scholar 

  76. Follath F, Cleland JG, Just H, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet. 2002;360:196–202.

    Article  CAS  PubMed  Google Scholar 

  77. Zairis MN, Apostolatos C, Anastassiadis F, et al. Comparison of the effect of levosi-mendan,or dobutamine or placebo in chronic low output decompensated heart failure. CAlcium Sensitizer or Inotrope or NOne in low output heart failure (CASINO) study. Program and abstracts of the European Society of Cardiology, Heart Failure Update; 2004; 12–15 June; Wroclaw; 2004.

    Google Scholar 

  78. Mebazaa A. The Survival of patients with acute heart failure in need of IntraVEnous Inotropic Support (SURVIVE) trial. Late-breaking Clinical Trials. American Heart Association, Annual Scientific Session. Dallas; 13–16 Nov 2005.

    Google Scholar 

  79. Packer M. REVIVE II: multicenter placebo-controlled trial of levosimendan on clinical status in acutely decompensated heart failure. Program and abstracts from the American Heart Association Scientific Sessions 2005; 13–16 Nov 2005; Dallas: Late Breaking Clinical Trials II.

    Google Scholar 

  80. Urani F, Aurisicchio P, D’Ercole P. Hemodynamic and volumetric response to levosimendan in critical care patients. (abstract). Crit Care. 2004;6:84.

    Google Scholar 

  81. Delle Karth G, Buberl A, Geppert A, Neunteufl T, Huelsmann M, Kopp C, Nikfardjam M, Berger R, Heinz G. Haemodynamic effects of a continuous infusion of levosimendan in critically ill patients with cardiogenic shock requiring catecholamines. Acta Anaesthesiol Scand. 2003;47:1251–6.

    Article  CAS  PubMed  Google Scholar 

  82. Moiseyev VS, Poder P, Andrejevs N, Ruda MY, Golikov AP, Lazebnik LB, Kobalava ZD, Lehtonen LA, Laine T, Nieminen MS, Lie KI. RUSSLAN Study Investigators. Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double blind study (RUSSLAN). Eur Heart J. 2002;23:1422–32.

    Google Scholar 

  83. Figgitt DP, Gillies PS, Goa KL. Levosimendan. Drugs. 2001;61(5):613–27.

    Article  CAS  PubMed  Google Scholar 

  84. Solaro RJ, de Tombe PP. Review focus series: sarcomeric proteins as key elements in integrated control of cardiac function. Cardiovasc Res. 2008;77:616–8.

    Article  CAS  PubMed  Google Scholar 

  85. Spudich JA. How molecular motors work. Nature. 1994;372:515–8.

    Article  CAS  PubMed  Google Scholar 

  86. Cohn JN, Goldstein SO, Greenberg BH, Lorell BH, Bourge RC, Jaski BE, Gottlieb SO, McGrew 3rd F, DeMets DL, White BG. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone trial investigators. N Engl J Med. 1998;339:1810–6. doi:10.1056/NEJM199812173392503.

    Article  CAS  PubMed  Google Scholar 

  87. Teerlink JR. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail Rev. 2009;14(4):289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Malik F, Teerlink J, Escandon R, Clake C, Wolff A. The selective cardiac myosin activator, CK-1827452, a calcium-independent inotrope, increases left ventricular systolic function by increasing ejection time rather than the velocity of contraction. Circulation. 2006;114(18 Suppl):441.

    Google Scholar 

  89. Anderson RL, Sueoka SH, Rodriguez HM, Lee KH, Cox DR, Kawas R, Morgan BP, Sakowicz R, Morgans DJ, Malik F, Elias KA. In vitro and in vivo efficacy of the cardiac myosin activator CK-1827452. Mol Bio Cell. 2005;16.

    Google Scholar 

  90. Anderson RL, Pokrovskii M, Elias KA. Effects of cardiac myosin activators on excitation-contraction (E-C) coupling in ventricular myocytes. Biophysical society meeting abstracts. Biophys J. 2007;2007:133a.

    Google Scholar 

  91. Shen YT, Zhang Y, Morgans DJ, Vatner SF, Malik F. A novel inotropic agent that activates cardiac myosin and increases cardiac contractility without increasing MVO2 in heart failure with left ventricular hypertrophy. J Am Coll Cardiol. 2008;51(10, Suppl 1):A54. doi:10.1016/j.jacc.2008.02.004.

    Google Scholar 

  92. Teerlink JR, Malik FI, Clarke CP, Saikali KG, Escandon RD, Lee JH, Wolff AA. The selective cardiac myosin activator, CK-1827452, increases left ventricular systolic function by increasing ejection time: results of a first-in-human study of a unique and novel mechanism. J Card Fail. 2006;12:763.

    Article  Google Scholar 

  93. Cleland JG, et al. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet. 2011;378(9792):676–83.

    Article  CAS  PubMed  Google Scholar 

  94. Barry HG, Will C, Rafael E, Jacqueline HL et al. Phase II Safety Study Evaluating the Novel Cardiac Myosin Activator, CK-1827452, in Patients with Ischemic Cardiomyopathy and Angina. J Card Fail. 2009;15(6). Supplement, S67.

    Google Scholar 

  95. Teerlink JR, Felker GM, McMurray JJV et al. Acute Treatment With Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure. The ATOMIC-AHF Study. J Am Coll Cardiol. 2016;67(12):1444–55

    Google Scholar 

  96. Zimmerman EA, Nilaver G, Hou-Yu A, Silverman AJ. Vasopressinergic and oxytocinergic pathways in the central nervous system. Fed Proc. 1984;43(1):91.

    CAS  PubMed  Google Scholar 

  97. Guyton AC. The body fluids and kidneys. In: Guyton AC, Hall JE, editors. Textbook of medical physiology. Philadelphia: WB Saunders Company; 2006. p. 291–414.

    Google Scholar 

  98. Wade CE, Keil LC, Ramsay DJ. Role of volume and osmolality in the control of plasma vasopressin in dehydrated dogs. Neuroendocrinology. 1983;37:349–53.

    Article  CAS  PubMed  Google Scholar 

  99. Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frøkiaer J, Marples D. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol. 1999;10(3):647.

    CAS  PubMed  Google Scholar 

  100. Sugimoto T, Saito M, Mochizuki S, Watanabe Y, Hashimoto S, Kawashima H. Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J Biol Chem. 1994;269(43):27088.

    CAS  PubMed  Google Scholar 

  101. Hibonnier M, Conarty DM, Preston JA, et al. Molecular pharmacology of human vasopressin receptors. Adv Exp Med Biol. 1998;449:251–76.

    Article  Google Scholar 

  102. Yamamura Y, Nakamura S, Itoh S, et al. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther. 1998;287(3):860–7.

    CAS  PubMed  Google Scholar 

  103. Rouleau JL, Packer M, Moye L, et al. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol. 1994;24(3):583–91.

    Article  CAS  PubMed  Google Scholar 

  104. Hauptman P, Zimmer C, Udelson J, et al. Comparison of two doses and dosing regimens of tolvaptan in congestive heart failure. J Cardiovasc Pharmacol. 2005;46(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  105. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2 receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112.

    Article  CAS  PubMed  Google Scholar 

  106. Gheorghiade M, Niazi I, Ouyang J, Czerwiec F, Kambayashi J, Zampino M, Orlandi C, Tolvaptan Investigators. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation. 2003;107(21):2690–6.

    Article  CAS  PubMed  Google Scholar 

  107. Gheorghiade M, Gattis WA, O’Connor C, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291:1963–71.

    Article  CAS  PubMed  Google Scholar 

  108. Gheorghiade M, Konstam MA, Burnett JC, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure, the EVEREST clinical status trials. JAMA. 2007;297:1332–43.

    Article  CAS  PubMed  Google Scholar 

  109. Udelson JE, Orlandi C, Ouyang J, Krasa H, Zimmer CA, Frivold G, Haught WH, Meymandi S, Macarie C, Raef D, Wedge P, Konstam MA, Gheorghiade M. Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J Am Coll Cardiol. 2008;52(19):1540–5.

    Article  CAS  PubMed  Google Scholar 

  110. Udelson JE, McGrew FA, Flores E, Ibrahim H, Katz S, Koshkarian G, O’Brien T, Kronenberg MW, Zimmer C, Orlandi C, Konstam MA. Multicenter, randomized, double-blind, placebo-controlled study on the effect of oral tolvaptan on left ventricular dilation and function in patients with heart failure and systolic dysfunction. J Am Coll Cardiol. 2007;49(22):2151–9.

    Article  CAS  PubMed  Google Scholar 

  111. Kinugawa K, Sato N, Inomata T, Shimakawa T, Iwatake N, Mizuguchi K. Efficacy and safety of tolvaptan in heart failure patients with volume overload. Circ J. 2014;78(4):844–52.

    CAS  PubMed  Google Scholar 

  112. Shirakabe A, Hata N, Yamamoto M, Kobayashi N, Shinada T, Tomita K, Tsurumi M, Matsushita M, Okazaki H, Yamamoto Y, Yokoyama S, Asai K, Shimizu W. Immediate administration of tolvaptan prevents the exacerbation of acute kidney injury and improves the mid-term prognosis of patients with severely decompensated acute heart failure. Circ J. 2014;78(4):911–21.

    Article  CAS  PubMed  Google Scholar 

  113. Suzuki S, et al. Acute heart failure volume control multicenter randomized (AVCMA) trial: comparison of tolvaptan and carperitide. J Clin Pharmacol. 2013;53(12):1277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gheorghiade M, Abraham WT, Albert NM, et al; OPTIMIZE‐HF Investigators and Coordinators. Relationship between admission serum sodium concentration, clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE‐HF registry. Eur Heart J. 2007;28:980–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Campbell MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campbell, P.T., Saberian, S. (2016). Novel Therapies for the Prevention and Management of Acute Decompensated Heart Failure. In: Ventura, H. (eds) Pharmacologic Trends of Heart Failure. Current Cardiovascular Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-30593-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30593-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30591-2

  • Online ISBN: 978-3-319-30593-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics