Skip to main content

Computer Simulations of Homocysteine Molecules Embedded in High-Density Lipoprotein

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

  • 643 Accesses

Abstract

Excessive level of homocysteine is a factor increasing the risk for cardiovascular diseases and other ailments. In this paper we applied molecular dynamics method to study the homocysteine system embedded in high-density lipoprotein. HDL aggregate removes cholesterol from artery walls. We fill the aggregate with almost 700 biologically important homocysteine molecules.

The calculations were performed in the physiological temperature T = 310 K. HDL container was simulated both, in water environment and without water, to estimate the impact of water on the dynamics of the molecules inside HDL aggregate. Moreover, the behaviour of homocysteine molecules in HDL was compared with their dynamics in a free cluster consisted of the same number of homocysteine molecules, as placed inside the lipoprotein.

The structural and dynamical observables (mean square displacement, diffusion coefficient, second-rank order parameter, Lindemann index and radial distribution function) are discussed. We have found that although the dynamics of homocysteine molecules does not strongly depend on the presence of water surrounding HDL, the differences in dynamics of homocysteine molecules in the free cluster and these embedded in HDL are clearly observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kontush A, Chapman MJ (2012) High-density lipoproteins structure, metabolism, function, and therapeutics. Wiley, Hoboken, NJ

    Google Scholar 

  2. Fielding CJ (2007) High-density lipoproteins: from basic biology to clinical aspects. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Andersen CJ, Fernandez ML (2013) Dietary approaches to improving atheroprotective HDL functions. Food Funct 4:1304–1313. doi:10.1039/c3fo60207a

    Article  Google Scholar 

  4. Phillips MC (2013) Thematic review series: high density lipoprotein structure, function, and metabolism new insights into the determination of HDL structure by apolipoproteins. J Lipid Res 54:2034–2048. doi:10.1194/jlr.R034025

    Article  Google Scholar 

  5. Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96:1221–1232. doi:10.1161/01.RES.0000170946.56981.5c

    Article  Google Scholar 

  6. Fielding C, Fielding P (1995) Molecular physiology of reverse cholesterol transport. J Lipid Res 36:211–228

    Google Scholar 

  7. Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A (2002) HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 161:1–16. doi:10.1016/S0021-9150(01)00651-7

    Article  Google Scholar 

  8. McCully KS (1999) The homocysteine revolution: medicine for the new millennium. Keats, Los Angeles

    Google Scholar 

  9. Carmel R, Jacobsen DW (2011) Homocysteine in health and disease. Cambridge University Press, New York

    Google Scholar 

  10. Graham I, Refsum H, Rosenberg IH, Ueland PM, Shuman JM (1997) Homocysteine metabolism: from basic science to clinical medicine. Springer, Boston, MA

    Book  Google Scholar 

  11. Robinson K (2000) Homocysteine and vascular disease. Springer, Dordrecht

    Book  Google Scholar 

  12. Fakhrzadeh H, Ghotbi S, Larijani B (2007) The role of homocysteine in health and disease. Iran J Diabetes Lipid Disord 7:135–149

    Google Scholar 

  13. Huang C, Zhang L, Wang Z, Pan H, Zhu J (2011) Endothelial progenitor cells are associated with plasma homocysteine in coronary artery disease. Acta Cardiol 66:773–777. doi:10.2143/AC.66.6.2136962

    Google Scholar 

  14. Houcher Z, Houcher B, Touabti A, Begag S, Egin Y, Akar N (2012) Nutritional factors, homocysteine and C677T polymorphism of the methylenetetrahydrofolate reductase gene in algerian subjects with cardiovascular disease. Pteridines 23:14–21

    Article  Google Scholar 

  15. Nagele P, Tallchief D, Blood J, Sharma A, Kharasch ED (2011) Nitrous oxide anesthesia and plasma homocysteine in adolescents. Anesth Analg 113:843–848. doi:10.1213/ANE.0b013e31822402f5

    Article  Google Scholar 

  16. Enneman AW, van der Velde N, de Jonge R, Heil SG, Stolk L, Hofman A, Rivadeneira F, Zillikens MC, Uitterlinden AG, van Meurs JBJ (2012) The association between plasma homocysteine levels, methylation capacity and incident osteoporotic fractures. Bone 50:1401–1405. doi:10.1016/j.bone.2012.03.013

    Article  Google Scholar 

  17. Reyna-Villasmil E, Mejia-Montilla J, Torres-Cepeda D, Santos-Bolívar J, Aragon-Charrys J, Reyna-Villasmil N, Bravo-Henríquez A (2012) Efecto de las hormonas sexuales sobre las concentraciones de homocisteína en preeclámpticas y embarazadas normales. Prog Obstet Ginecol 55:226–231

    Article  Google Scholar 

  18. Brozek W, Hassler N, Varga F, Klaushofer K, Paschalis EP (2012) Effect of bisphosphonates on gene expression of fibroblasts cultured in the presence of homocysteine. Bone 51:S8. doi:10.1016/j.bone.2012.08.021

    Article  Google Scholar 

  19. Bergen NE, Jaddoe VWV, Timmermans S, Hofman A, Lindemans J, Russcher H, Raat H, Steegers-Theunissen RPM, Steegers EAP (2012) Understanding health behaviours in a cohort of pregnant women at risk of gestational diabetes mellitus: an observational study. Int J Obstet Gynaecol 119:739–751. doi:10.1111/j.1471-0528.2012.03321.x

    Article  Google Scholar 

  20. Frenkel D, Smit B (2001) Understanding molecular simulation, second edition: from algorithms to applications, 2nd edn. Academic, London

    MATH  Google Scholar 

  21. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  22. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  23. Raczynski P, Dawid A, Sakol M, Gburski Z (2007) The influence of the carbon nanotube on the structural and dynamical properties of cholesterol cluster. Biomol Eng 24:572–576. doi:10.1016/j.bioeng.2007.08.010

    Article  Google Scholar 

  24. Kolev V, Freger V (2015) Molecular dynamics investigation of ion sorption and permeation in desalination membranes. J Phys Chem B 119:14168–14179

    Article  Google Scholar 

  25. Raczynski P, Dawid A, Dendzik Z, Gburski Z (2005) Dielectric relaxation in water–cholesterol mixture cluster: molecular dynamics simulation. J Mol Struct 750:18–21. doi:10.1016/j.molstruc.2005.03.036

    Article  ADS  Google Scholar 

  26. Rahman A, Stilling FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55:3336–3359. doi:10.1063/1.1676585

    Article  ADS  Google Scholar 

  27. Kosmider M, Dendzik Z, Palucha S, Gburski Z (2004) Computer simulation of argon cluster inside a single-walled carbon nanotube. J Mol Struct 704:197–201. doi:10.1016/j.molstruc.2004.02.050

    Article  ADS  Google Scholar 

  28. Hunt TA (2016) Periodic boundary conditions for the simulation of uniaxial extensional flow of arbitrary duration. Mol Simul 42:347–352. doi:10.1080/08927022.2015.1051043

    Article  Google Scholar 

  29. Toukan K, Rahman A (1985) Molecular-dynamics study of atomic motions in water. Phys Rev B 31:2643–2648. doi:10.1103/PhysRevB.31.2643

    Article  ADS  Google Scholar 

  30. Raczynski P, Dawid A, Gburski Z (2005) Depolarized light scattering in small fullerene clusters—computer simulation. J Mol Struct 744:525–528. doi:10.1016/j.molstruc.2004.12.064

    Article  ADS  Google Scholar 

  31. Chaban VV, Prezhdo OV (2015) Synergistic amination of graphene: molecular dynamics and thermodynamics. J Phys Chem Lett 6:4397–4403

    Article  Google Scholar 

  32. Gorny K, Dendzik Z, Raczynski P, Gburski Z (2012) Dynamic properties of propylene glycol confined in ZSM-5 zeolite matrix—a computer simulation study. Solid State Commun 152:8–12. doi:10.1016/j.ssc.2011.10.020

    Article  ADS  Google Scholar 

  33. Dawid A, Gburski Z (1997) Dynamical properties of the argon–krypton clusters: molecular dynamics calculations. J Mol Struct 410–411:507–511. doi:10.1016/S0022-2860(96)09512-9

    Google Scholar 

  34. Pabis A, Geronimo I, York DM, Paneth P (2014) Molecular dynamics simulation of nitrobenzene dioxygenase using AMBER force field. J Chem Theory Comput 10:2246–2254. doi:10.1021/ct500205z

    Article  Google Scholar 

  35. Smith L, Zimmerman JA, Hale LM, Farkas D (2014) Molecular dynamics study of deformation and fracture in a tantalum nano-crystalline thin film. Model Simul Mater Sci Eng 22:045010. doi:10.1088/0965-0393/22/4/045010

    Article  ADS  Google Scholar 

  36. Raczynski P, Gburski Z (2010) Molecular dynamics and dielectric relaxation of homocysteine layer between graphite walls—computer simulation. Rev Adv Mater Sci 23:175–179

    Google Scholar 

  37. Duke JR, Ananth N (2015) Simulating excited state dynamics in systems with multiple avoided crossings using mapping variable ring polymer molecular dynamics. J Phys Chem Lett 6:4219–4223

    Article  Google Scholar 

  38. Gburski Z, Raczynski P (2010) Influence of carbon nanotube on cholesterol lodgment: molecular dynamics simulation. Rev Adv Mater Sci 23:64–69

    Google Scholar 

  39. Grest G, Kremer K (1986) Molecular-dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33:3628–3631. doi:10.1103/PhysRevA.33.3628

    Article  ADS  Google Scholar 

  40. Gburski Z (1985) Convergence of memory functions for the vibrational dephasing process in liquids. Chem Phys Lett 115:236–240. doi:10.1016/0009-2614(85)80687-4

    Article  ADS  Google Scholar 

  41. Gao Y, Liu J, Shen J, Wu Y, Zhang L (2014) Influence of various nanoparticle shapes on the interfacial chain mobility: a molecular dynamics simulation. Phys Chem Chem Phys 16:21372–21382. doi:10.1039/c4cp03019b

    Article  Google Scholar 

  42. Robertson JC, Cheatham TE (2015) DNA backbone BI/BII distribution and dynamics in E2 protein-bound environment determined by molecular dynamics simulations. J Phys Chem B 119:14111–14119

    Article  Google Scholar 

  43. Gburski Z, Zerda T (1980) Vibrational dephasing and intermolecular interactions in liquids. Acta Phys Pol A 57:447–454

    Google Scholar 

  44. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  46. Price S (2011) Importing medicines: the VMD’s special import and special treatment schemes. Vet Rec 168:445–446. doi:10.1136/vr.d2617

    Article  Google Scholar 

  47. MacKerell BD, Bellott D, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi:10.1021/jp973084f

    Article  Google Scholar 

  48. MacKerell ADJ, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265. doi:10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W

    Article  Google Scholar 

  49. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. doi:10.1063/1.445869

    Article  ADS  Google Scholar 

  50. Jena P, Rao BK, Khanna SN (2013) Physics and chemistry of small clusters. Springer, Berlin

    Google Scholar 

Download references

Acknowledgment

Calculations were performed at ICM University of Warsaw, Grant no. G53-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Gburski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gburski, Z., Raczyński, P. (2016). Computer Simulations of Homocysteine Molecules Embedded in High-Density Lipoprotein. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_26

Download citation

Publish with us

Policies and ethics