Skip to main content

Parameter Learning for CRF-Based Tissue Segmentation of Brain Tumors

  • Conference paper
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9556))

Included in the following conference series:

Abstract

In this work, we investigated the potential of a recently proposed parameter learning algorithm for Conditional Random Fields (CRFs). Parameters of a pairwise CRF are estimated via a stochastic subgradient descent of a max-margin learning problem. We compared the performance of our brain tumor segmentation method using parameter learning to a version using hand-tuned parameters. Preliminary results on a subset of the BRATS2015 training set show that parameter learning leads to comparable or even improved performance. In addition, we also performed experiments to study the impact of the composition of training data on the final segmentation performance. We found that models trained on mixed data sets achieve reasonable performance compared to models trained on stratified data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fast-PD requires \(B_{i,j}\) to define a semi-metric.

References

  1. Wen, P.Y., Macdonald, D.R., Reardon, D.A., Cloughesy, T.F., Sorensen, A.G., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)

    Article  Google Scholar 

  2. Reuter, M., Gerstner, E.R., Rapalino, O., et al.: Impact of MRI head placement on glioma response assessment. J. Neuro-Oncol. 118, 123–129 (2014)

    Article  Google Scholar 

  3. Kanaly, C.W., Ding, D., Mehta, A.I., Waller, A.F., Crocker, I., Desjardins, A., Reardon, D.A., Friedman, A.H., Bigner, D.D., Sampson, J.H.: A novel method for volumetric MRI response assessment of enhancing brain tumors. PLoS ONE 6(1), e16031 (2011)

    Article  Google Scholar 

  4. Porz, N., Bauer, S., Pica, A., Schucht, P., Beck, J., Verma, R.K., Slotboom, J., Reyes, M., Wiest, R.: Multi-modal glioblastoma segmentation: man versus machine. PLoS ONE 9(5), e96873 (2014)

    Article  Google Scholar 

  5. Velazquez, E.R., Meier, R., Dunn Jr., W.D., Alexander, B., Bauer, S., Gutman, D.A., Reyes, M., Aerts, H.J.W.L.: Fully automatic GBM segmentation in the TCGA-GBM dataset : prognosis and correlation with VASARI features. Nat. Sci. Rep. 5, 16822 (2015)

    Article  Google Scholar 

  6. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). In: TMI (2014)

    Google Scholar 

  7. Lombaert, H., Zikic, D., Criminisi, A., Ayache, N.: Laplacian forests: semantic image segmentation by guided bagging. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 496–504. Springer, Heidelberg (2014)

    Google Scholar 

  8. Zhao, L., Wu, W., Corso, J.J.: Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 567–575. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: Appearance-and context-sensitive features for brain tumor segmentation. In: MICCAI BRATS Challenge (2014)

    Google Scholar 

  10. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Lucchi, A., Marquez-Neila, P., Becker, C., Li, Y., Smith, K., Knott, G., Fua, P.: Learning Structured Models for Segmentation of 2D and 3D Imagery. In: IEEE TMI, p. 1, March 2014

    Google Scholar 

  12. Taskar, B., Guestrin, C., Koller, D.: Max margin Markov networks. Neural Inf. Process. Syst. (2003)

    Google Scholar 

  13. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)

    Google Scholar 

  14. Nowozin, S., Lampert, C.H.: Structured learning and prediction in computer vision. Found. Trends Comput. Graph. Vis. 6(3–4), 185–365 (2010)

    Article  MATH  Google Scholar 

  15. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  16. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer, Heidelberg (2013)

    Book  Google Scholar 

  17. Ben Taskar, V., Chatalbashev, D.K., Guestrin, C.: Learning structured prediction models: a large margin approach. In: ICML (2005)

    Google Scholar 

  18. Ratliff, N.D., Andrew Bagnell, J., Zinkevich, M.A.: (Online) subgradient methods for structured prediction. Artif. Intell. Stat. (2007)

    Google Scholar 

  19. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE TPAMI 29(8), 1436–1453 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Unions Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 600841.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Meier, R., Karamitsou, V., Habegger, S., Wiest, R., Reyes, M. (2016). Parameter Learning for CRF-Based Tissue Segmentation of Brain Tumors. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2015. Lecture Notes in Computer Science(), vol 9556. Springer, Cham. https://doi.org/10.1007/978-3-319-30858-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30858-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30857-9

  • Online ISBN: 978-3-319-30858-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics