Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 242))

Abstract

Acoustic emission analysis is about the detection and interpretation of ultrasonic waves caused by rapid internal displacements. In the context used herein the formation and propagation of cracks in fiber reinforced materials is understood as most relevant acoustic emission source. During propagation of the emitted acoustic wave, the characteristics of the signal (e.g. frequency content) suffer from attenuation, dispersion and propagation in guiding media. In addition, the characteristics of the signals detected at the surface of the solid are further altered by the detection process using piezoelectric sensors. This chapter starts with a short introduction to the principle of operation followed by a sequential review on the acoustic emission source, aspects of wave propagation in guided media and the signal detection process. Subsequently, signal classification techniques and source localization algorithms are discussed with a particular focus on recent developments. The chapter closes with some applications of acoustic emission as in situ technique to monitor failure of fiber reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The third step is only required due to the technical implementation chosen. For the selected modeling environment, different solver settings were required for the second and the third computation step making it necessary to split this part of the computation in two steps.

  2. 2.

    This assumption is not absolutely justified in reality, since it is well known that fibers show Weibull-type strength distributions, and may have significant variation in their cross-sections and their modulus.

  3. 3.

    According to ASTM E976 calibration standard [V/μbar]

  4. 4.

    Note that [48, 73] discuss the effect of the acoustic impedance but not for incident plate waves.

  5. 5.

    Note that the arrival of a signal at two or more sensors within a certain time interval does not necessarily imply that the source position can be determined by a source localization algorithm.

  6. 6.

    The term “Felicity” was established by Timothy Fowler, honoring the contributions of his daughter Felicity to his scientific work [218].

References

  1. Lacidogna, G., Carpinteri, A., Manuello, A., Durin, G., Schiavi, A., Niccolini, G., Agosto, A.: Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain 47, 144–152 (2011)

    Article  Google Scholar 

  2. Giordano, M., Condelli, L., Nicolais, L.: Acoustic emission wave propagation in a viscoelastic plate. Compos. Sci. Technol. 59, 1735–1743 (1999)

    Article  Google Scholar 

  3. Hamstad, M.A.: Thirty years of advances and some remaining challenges in the application of acoustic emission to composite materials. In: Kishi, T., Ohtsu, M., Yuyama, S. (eds.) Acoustic Emission Beyond the Millennium, pp. 77–91. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  4. Ono, K., Gallego, A.: Research and applications of AE on advanced composites. J. Acoust. Emiss. 30, 180–229 (2012)

    Google Scholar 

  5. Reinhardt, H.W., Grosse, C.U., Kurz, J.H.: Localization and mode determination of fracture events by acoustic emission. In: Carpinteri, A., Lacidogna, G. (eds.) Acoustic Emission and Critical Phenomena. Taylor & Francis Group, London (2008)

    Google Scholar 

  6. Prosser, W.H., Jackson, K.E., Kellas, S., Smith, B.T., McKeon, J., Friedman, A.: Advanced waveform-based acoustic emission detection of matrix cracking in composites. Mater. Eval. 53, 1052–1058 (1995)

    Google Scholar 

  7. Huguet, S., Godin, N., Gaertner, R., Salmon, L., Villard, D.: Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Compos. Sci. Technol. 62, 1433–1444 (2002)

    Article  Google Scholar 

  8. Scholey, J.J., Wilcox, P.D., Wisnom, M.R., Friswell, M.I.: Quantitative experimental measurements of matrix cracking and delamination using acoustic emission. Compos. Part A Appl. Sci. Manuf. 41, 612–623 (2010)

    Article  Google Scholar 

  9. Giordano, M., Calabro, A., Esposito, C., D’Amore, A., Nicolais, L.: An acoustic-emission characterization of the failure modes in polymer-composite materials. Compos. Sci. Technol. 58, 1923–1928 (1998)

    Article  Google Scholar 

  10. Wilcox, P.D., Lee, C.K., Scholey, J.J., Friswell, M.I., Wisnom, M.R., Drinkwater, B.W.: Progress towards a forward model of the complete acoustic emission process. Adv. Mater. Res. 13–14, 69–75 (2006)

    Article  Google Scholar 

  11. Prosser, W.H., Hamstad, M.A., Gary, J., Gallagher, A.O.: Finite element and plate theory modeling of acoustic emission waveforms. J. Nondestruct. Eval. 18, 83–90 (1999)

    Article  Google Scholar 

  12. Sause, M.G.R., Horn, S.: Simulation of Lamb wave excitation for different elastic properties and acoustic emission source geometries. J. Acoust. Emiss. 28, 142–154 (2010)

    Google Scholar 

  13. Sause, M.G.R., Richler, S.: Finite element modelling of cracks as acoustic emission sources. J. Nondestruct. Eval. 34, 1–13 (2015)

    Article  Google Scholar 

  14. Livne, A., Bouchbinder, E., Svetlizky, I., Fineberg, J.: The near-tip fields of fast cracks. Science 327, 1359–1363 (2010)

    Article  Google Scholar 

  15. Livne, A., Bouchbinder, E., Fineberg, J.: Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Phys. Rev. Lett. 101, 1–4 (2008)

    Article  Google Scholar 

  16. Landau, L.D., Lifschitz, E.M.: Elastizitätstheorie. Akademie Verlag GmbH, Berlin (1987)

    Google Scholar 

  17. Freund, L.B.: The initial wave front emitted by a suddenly extending crack in an elastic solid. J. Appl. Mech. 39, 601–602 (1972)

    Article  Google Scholar 

  18. Aki, K., Richards, P.G.: Quantitative Seismology, Theory and Methods. University Science, Sausalito (1980)

    Google Scholar 

  19. Ohtsu, M.: Source mechanism and waveform analysis of acoustic emission in concrete. J. Acoust. Emiss. 2, 103–112 (1982)

    Google Scholar 

  20. Lysak, M.V.: Development of the theory of acoustic emission by propagating cracks in terms of fracture mechanics. Eng. Fract. Mech. 55, 443–452 (1996)

    Article  Google Scholar 

  21. Ohtsu, M., Ono, K.: A generalized theory of acoustic emission and Green’s function in a half space. J. Acoust. Emiss. 3, 27–40 (1984)

    Google Scholar 

  22. Ohtsu, M., Ono, K.: The generalized theory and source representation of acoustic emission. J. Acoust. Emiss. 5, 124–133 (1986)

    Google Scholar 

  23. Hamstad, M.A., O’Gallagher, A., Gary, J.: Modeling of buried monopole and dipole sources of acoustic emission with a finite element technique. J. Acoust. Emiss. 17, 97–110 (1999)

    Google Scholar 

  24. Sause, M.G.R., Horn, S.: Simulation of acoustic emission in planar carbon fiber reinforced plastic specimens. J. Nondestruct. Eval. 29, 123–142 (2010)

    Article  Google Scholar 

  25. Hamstad, M.A.: Frequencies and amplitudes of AE signals in a plate as a function of source rise time. In: 29th European Conference on Acoustic Emission Testing, Vienna, Austria, 2010, pp. 1–8.

    Google Scholar 

  26. Scruby, C.B., Buttle, D.J.: Quantitative fatigue crack measurement by acoustic emission. In: Marsh, K.J., Smith, R., Ritchie, R.O. (eds.) Crack Measurement: Techniques and Applications, pp. 207–287. Engineering Materials Advisory Services Ltd., West Midlands (1992)

    Google Scholar 

  27. Wadley, H.N.G., Scruby, C.B.: Acoustic Emission Source Characterization. Advances in Acoustic Emission. Dunhart, Knoxville (1981)

    Google Scholar 

  28. Scruby, C.B.: Quantitative acoustic emission techniques. Nondestruct. Test. 8, 141–208 (1985)

    Google Scholar 

  29. Green, E.R.: Acoustic emission sources in a cross-ply laminated plate. Compos. Eng. 5, 1453–1469 (1995)

    Article  Google Scholar 

  30. Green, E.R.: Acoustic emission in composite laminates. J. Nondestruct. Eval. 17, 117–127 (1998)

    Article  Google Scholar 

  31. Hamstad, M.A., O’Gallagher, A., Gary, J.: A wavelet transform applied to acoustic emission signals: part 1: source identification. J. Acoust. Emiss. 20, 39–61 (2002)

    Google Scholar 

  32. Downs, K.S., Hamstad, M.A., O’Gallagher, A.: Wavelet transform signal processing to distinguish different acoustic emission sources. J. Acoust. Emiss. 21, 52–69 (2003)

    Google Scholar 

  33. Hora, P., Cervena, O.: Acoustic emission source modeling. Appl. Comput. Mech. 4, 25–36 (2010)

    Google Scholar 

  34. Hamstad, M.A., O’Gallagher, A., Gary, J.: A wavelet transform applied to acoustic emission signals: part 2: source location. J. Acoust. Emiss. 20, 62–82 (2002)

    Google Scholar 

  35. Sause, M.: Identification of Failure Mechanisms in Hybrid Materials Utilizing Pattern Recognition Techniques Applied to Acoustic Emission Signals. mbv-Verlag, Berlin (2010)

    Google Scholar 

  36. Sause, M.G.R.: Modelling of crack growth based acoustic emission release in aluminum alloys. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

  37. Kalafat, S., Zelenyak, A.-M., Sause, M.G.R.: In-situ monitoring of composite failure by computing tomography and acoustic emission. In: 20th International Conference on Composite Materials, pp. 1–8. Copenhagen, Denmark (2015)

    Google Scholar 

  38. Juhasz, T.: Ein neues physikalisch basiertes Versagenskriterium für schwach 3D-verstärkte Faserverbundlaminate. PhD-thesis, University Carolo-Wilhelmina Braunschweig (2003)

    Google Scholar 

  39. Puck, A.: Festigkeitsanalyse von Faser-Matrix-Laminaten Modelle für die Praxis. Carl Hanser Verlag, Munich (1996)

    Google Scholar 

  40. Green, A.E., Zerna, W.: Theoretical Elasticity. Oxford University Press, New York (2002)

    Google Scholar 

  41. Scott, A.E., Sinclair, I., Spearing, S.M., Mavrogordato, M., Bunsell, A.R., Thionnet, A.: Comparison of the accumulation of fibre breaks occurring in a unidirectional carbon/epoxy composite identified in a multi-scale micro-mechanical model with that of experimental observations using high resolution computed tomography. In: Matériaux 2010, pp. 1–9. Nantes, France (2010)

    Google Scholar 

  42. Boltz, E.S., Fortunko, C.M., Hamstad, M.A., Renken, M.C.: Absolute sensitivity of air, light and direct-coupled wideband acoustic emission transducers. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 967–974. Springer, Boston (1995)

    Chapter  Google Scholar 

  43. Tatro, C.A.: Design criteria for acoustic emission experimentation. In: Acoustic Emission ASTM STP 505, pp. 84–99 (1972)

    Google Scholar 

  44. Stoneley, R.: Elastic waves at the surface of separation of two solids. Proc. R. Soc. Lond. A. 106, 416–428 (1924)

    Article  Google Scholar 

  45. Love, A.E.H.: Some Problems of Geodynamics. University Press, Cambridge (1911)

    Google Scholar 

  46. Lamb, H.: On waves in an elastic plate. Proc. R. Soc. Lond. A. 93, 114–128 (1917)

    Article  Google Scholar 

  47. Rayleigh, L.: On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. s1–17, 4–11 (1885)

    Article  Google Scholar 

  48. Krautkrämer, J., Krautkrämer, H.: Ultrasonic Testing of Materials. Springer, Berlin (1983)

    Book  Google Scholar 

  49. Cremer, L., Heckl, M.: Körperschall Physikalische Grundlagen und technische Anwendungen. Springer Verlag, Berlin (1996)

    Google Scholar 

  50. Redwood, M.: Mechanical Waveguides; The Propagation of Acoustic and Ultrasonic Waves in Fluids and Solids with Boundaries. Pergamon Press, New York (1960)

    Google Scholar 

  51. Bergman, E.H., Shahbender, R.: Effect of statically applied stresses on the velocity of propagation of ultrasonic waves. J. Appl. Phys. 29, 1736–1738 (1958)

    Article  Google Scholar 

  52. Grosse, C.U., Ohtsu, M.: Acoustic Emission Testing. Springer, Berlin (2008)

    Book  Google Scholar 

  53. Sause, M.G.R., Hamstad, M.A., Horn, S.: Finite element modeling of Lamb wave propagation in anisotropic hybrid materials. Compos. Part B Eng. 53, 249–257 (2013)

    Article  Google Scholar 

  54. Lowe, M.J.S.: Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 525–542 (1995)

    Article  Google Scholar 

  55. Castaings, M., Bacon, C., Hosten, B., Predoi, M.V.: Finite element predictions for the dynamic response of thermo-viscoelastic material structures. J. Acoust. Soc. Am. 115, 1125 (2004)

    Article  Google Scholar 

  56. Heidary, Z., Ozevin, D.: On the influences of boundary reflections and piezoelectric sensors to the characteristics of elastic waves for pattern recognition methods. J. Nondestruct. Eval. 34, 271 (2014)

    Article  Google Scholar 

  57. Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39, 91–114 (2007)

    Article  Google Scholar 

  58. Thomson, W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89 (1950)

    Article  Google Scholar 

  59. Haskell, N.A.: The dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 43, 17–34 (1953)

    Google Scholar 

  60. Kundu, T., Mal, A.: Elastic waves in a multilayered solid due to a point source. Wave Motion 7, 459–471 (1985)

    Article  Google Scholar 

  61. Sause, M.G.R., Horn, S.: Influence of internal discontinuities on ultrasonic signal propagation in carbon fiber reinforced plastics. In: 30th European Conference on Acoustic Emissionm pp. 1–11. Granada, Spain (2012)

    Google Scholar 

  62. Sause, M.G.R.: Acoustic emission signal propagation in damaged composite structures. J. Acoust. Emiss. 31, 1–18 (2013)

    Google Scholar 

  63. Auld, B.A.: Acoustic Fields ans Waves in Solids. Krieger, Malabar (1990)

    Google Scholar 

  64. Hosten, B.: Heterogeneous structure of modes and Kramers-Kronig relationship in anisotropic viscoelastic materials. J. Acoust. Soc. Am. 104, 1382–1388 (1998)

    Article  Google Scholar 

  65. Calomfirescu, M., Herrmann, A.: Attenuation of Lamb waves in composites: models and possible applications. In: Proceedings of the 6th International Workshop on Structural Health Monitoring, pp. 1–8. Stanford, CA, USA (2007)

    Google Scholar 

  66. Pollock, A.A.: Classical wave theory in practical AE testing. In: Proceedings of the 8th International AE Symposium, pp. 708–721. Tokyo, Japan (1986)

    Google Scholar 

  67. Prosser, W.H.: Advanced AE techniques in composite materials research. J. Acoust. Emiss. 14, 1–11 (1996)

    Google Scholar 

  68. Neau, G., Deschamps, M., Lowe, M.J.S.: Group velocity of Lamb waves in anisotropic plates: comparison between theory and experiments. In: AIP Conference Proceedings, pp. 81–88 (2001)

    Google Scholar 

  69. Ward, I.M.: Mechanical Properties of Solid Polymers. Wiley, New York (1971)

    Google Scholar 

  70. Gallego, A., Ono, K.: An improved acousto-ultrasonic scheme with Lamb wave mode separation and damping factor in CFRP plates. J. Acoust. Emiss. 30, 109–123 (2012)

    Google Scholar 

  71. Choi, H.-I., Williams, W.: Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoust. Speech Signal Process. 37, 862–872 (1989)

    Article  Google Scholar 

  72. Beattie, A.G.: Acoustic emission, principles and Instrumentation. J. Acoust. Emiss. 2, 95–128 (1983)

    Google Scholar 

  73. Gautschi, G.: Piezoelectric Sensorics. Springer, Berlin (2002)

    Book  Google Scholar 

  74. Breckenridge, F.R.: Acoustic emission: some applications of Lamb’s problem. J. Acoust. Soc. Am. 57, 626 (1975)

    Article  Google Scholar 

  75. Scruby, C.B., Wadley, H.N.G.: A calibrated capacitance transducer for the detection of acoustic emission. J. Phys. D Appl. Phys. 11, 1487–1494 (1978)

    Article  Google Scholar 

  76. Read, I., Foote, P., Murray, S.: Optical fibre acoustic emission sensor for damage detection in carbon fibre composite structures. Meas. Sci. Technol. 13, N5–N9 (2002)

    Article  Google Scholar 

  77. de Oliveira, R., Frazão, O., Santos, J.L., Marques, A.T.: Optic fibre sensor for real-time damage detection in smart composite. Comput. Struct. 82, 1315–1321 (2004)

    Article  Google Scholar 

  78. Wild, G., Hinckley, S.: Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art. IEEE Sens. J. 8, 1184–1193 (2008)

    Article  Google Scholar 

  79. Wild, G., Hinckley, S.: Fiber Bragg grating sensors for acoustic emission and transmission detection applied to robotic NDE in structural health monitoring. In: 2007 I.E. Sensors Applications Symposium, pp. 1–6. IEEE (2007)

    Google Scholar 

  80. Watanabe, M., Enoki, M., Kishi, T.: Fracture behavior of ceramic coatings during thermal cycling evaluated by acoustic emission method using laser interferometers. Mater. Sci. Eng. A 359, 368–374 (2003)

    Article  Google Scholar 

  81. Enoki, M., Watanabe, M., Chivavibul, P., Kishi, T.: Non-contact measurement of acoustic emission in materials by laser interferometry. Sci. Technol. Adv. Mater. 1, 157–165 (2000)

    Article  Google Scholar 

  82. Bohse, J.: Damage analysis of polymer matrix composites by acoustic emission testing. In: EWGAE 2004—26th European Conference on Acoustic Emission Testing, pp. 339–348. Berlin, Germany (2004)

    Google Scholar 

  83. Breckenridge, F.R., Greenspan, M.: Surface-wave displacement: absolute measurements using a capacitance transducer. J. Acoust. Soc. Am. 69, 1177–1185 (1981)

    Article  Google Scholar 

  84. Grosse, C.U.: Quantitative non-destructive testing of construction materials using acoustic emission technique and ultrasound. PhD-thesis, University of Stuttgart (1996)

    Google Scholar 

  85. Goujon, L., Baboux, J.C.: Behaviour of acoustic emission sensors using broadband calibration techniques. Meas. Sci. Technol. 14, 903–908 (2003)

    Article  Google Scholar 

  86. Hamstad, M.A.: Re-examination of NIST acoustic emission absolute sensor calibration: part II: finite element modeling of acoustic emission signal from glass capillary fracture. J. Acoust. Emiss. 29, 175–183 (2011)

    Google Scholar 

  87. Sause, M.G.R., Hamstad, M.A., Horn, S.: Finite element modeling of conical acoustic emission sensors and corresponding experiments. Sens. Actuators A Phys. 184, 64–71 (2012)

    Article  Google Scholar 

  88. Hamstad, M.A.: Improved signal-to-noise wideband acoustic/ultrasonic contact displacement sensors for wood and polymers. Wood Fiber Sci. 29, 239–248 (1997)

    Google Scholar 

  89. McLaskey, G.C., Glaser, S.D.: Acoustic emission sensor calibration for absolute source measurements. J. Nondestruct. Eval. 31, 157–168 (2012)

    Article  Google Scholar 

  90. Huang, Y.-H., Ma, C.-C.: Forced vibration analysis of piezoelectric quartz plates in resonance. Sens. Actuators A Phys. 149, 320–330 (2009)

    Article  Google Scholar 

  91. Ohtsu, M., Ono, K.: Resonance analysis of piezoelectric transducer elements. J. Acoust. Emiss. 2, 247–260 (1983)

    Google Scholar 

  92. Ono, K., Cho, H., Matsuo, T.: Transfer functions of acoustic emission sensors. J. Acoust. Emiss. 26, 72–90 (2008)

    Google Scholar 

  93. Feng, G.-H., Tsai, M.-Y.: Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sens. Actuators A Phys. 162, 100–106 (2010)

    Article  Google Scholar 

  94. Or, S.W., Chan, H.L.W., Choy, C.L.: P(VDF-TrFE) copolymer acoustic emission sensors. Sens. Actuators A Phys. 80, 237–241 (2000)

    Article  Google Scholar 

  95. Barbezat, M., Brunner, A.J., Flüeler, P., Huber, C., Kornmann, X.: Acoustic emission sensor properties of active fibre composite elements compared with commercial acoustic emission sensors. Sens. Actuators A Phys. 114, 13–20 (2004)

    Article  Google Scholar 

  96. Marin-Franch, P., Martin, T., Tunnicliffe, D.L., Das-Gupta, D.K.: PTCa/PEKK piezo-composites for acoustic emission detection. Sens. Actuators A Phys. 99, 236–243 (2002)

    Article  Google Scholar 

  97. Zheng, S.X., McBride, R., Barton, J.S., Jones, J.D.C., Hale, K.F., Jones, B.E.: Intrinsic optical fibre sensor for monitoring acoustic emission. Sens. Actuators A Phys. 31, 110–114 (1992)

    Article  Google Scholar 

  98. Nieuwenhuis, J.H., Neumann, J.J., Greve, D.W., Oppenheim, I.J.: Generation and detection of guided waves using PZT wafer transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2103–2111 (2005)

    Article  Google Scholar 

  99. Sause, M.G.R.: Investigation of pencil-lead breaks as acoustic emission sources. J. Acoust. Emiss. 29, 184–196 (2011)

    Google Scholar 

  100. Greenspan, M.: The NBS conical transducer: analysis. J. Acoust. Soc. Am. 81, 173 (1987)

    Article  Google Scholar 

  101. McLaskey, G.C., Glaser, S.D.: Hertzian impact: experimental study of the force pulse and resulting stress waves. J. Acoust. Soc. Am. 128, 1087–1096 (2010)

    Article  Google Scholar 

  102. Lynnworth, L.C., Umina, J.A.: Extensional bundle waveguide techniques for measuring flow of hot fluids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 538–544 (2005)

    Article  Google Scholar 

  103. Hamstad, M.A.: Small diameter waveguide for wideband acoustic emission. J. Acoust. Emiss. 24, 234–247 (2006)

    Google Scholar 

  104. Rose, J.L.: Ultrasonic Waves in Solid Media. University Press, Cambridge (2004)

    Google Scholar 

  105. Zelenyak, A.-M., Hamstad, M.A., Sause, M.G.R.: Finite element modeling of acoustic emission signal propagation with various shaped waveguides. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

  106. Zelenyak, A.-M., Hamstad, M., Sause, M.: Modeling of acoustic emission signal propagation in waveguides. Sensors 15, 11805–11822 (2015)

    Article  Google Scholar 

  107. Ernst, R., Dual, J.: Acoustic emission source detection using the time reversal principle on dispersive waves in beams. In: Proceedings of the 2013 International Congress on Ultrasonics (ICU 2013), pp. 87–92. Singapore (2013)

    Google Scholar 

  108. Ciampa, F., Meo, M.: Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and a Newton-based optimization technique. Smart Mater. Struct. 19, 045027 (2010)

    Article  Google Scholar 

  109. Ozevin, D., Heidary, Z.: Acoustic emission source orientation based on time scale. J. Acoust. Emiss. 29, 123–132 (2011)

    Google Scholar 

  110. Gorman, M.R., Prosser, W.H.: AE source orientation by plate wave analysis. J. Acoust. Emiss. 9, 283–288 (1991)

    Google Scholar 

  111. Gorman, M.R.: Plate wave acoustic emission. J. Acoust. Soc. Am. 90, 358 (1991)

    Article  Google Scholar 

  112. Gorman, M.R., Ziola, S.M.: Plate waves produced by transverse matrix cracking. Ultrasonics 29, 245–251 (1991)

    Article  Google Scholar 

  113. Prosser, W.H.: The Propagation Characteristics of the Plate Modes of Acoustic Emission Waves in Thin Aluminum Plates and Thin Graphite/Epoxy Composite Plates and Tubes (1991)

    Google Scholar 

  114. Morscher, G.N.: Modal acoustic emission of damage accumulation in a woven SiC/SiC composite. Vacuum 59, 687–697 (1999)

    Google Scholar 

  115. Surgeon, M., Wevers, M.: Modal analysis of acoustic emission signals from CFRP laminates. NDT E Int. 32, 311–322 (1999)

    Article  Google Scholar 

  116. Prosser, W.H., Jackson, K.E., Kellas, S., Smith, B.T., McKeon, J., Friedman, A.: Evaluation of damage in metal matrix composites by means of acoustic emission monitoring. NDT E Int. 30, 108 (1997)

    Google Scholar 

  117. Gorman, M.R.: Modal AE analysis of fracture and failure in composite materials, and the quality and life of high pressure composite pressure cylinders. J. Acoust. Emiss. 29, 1–28 (2011)

    Google Scholar 

  118. Anastassopoulos, A.A., Philippidis, T.P.: Clustering methodology for the evaluation of acoustic emission from composites. J. Acoust. Emiss. 13, 11–21 (1995)

    Google Scholar 

  119. Philippidis, T., Nikolaidis, V., Anastassopoulos, A.: Damage characterisation of C/C laminates using neural network techniques on AE signals. NDT E Int. 31, 329–340 (1998)

    Article  Google Scholar 

  120. Richardson, J.M., Elsley, R.K., Graham, L.J.: Nonadaptive, semi-adaptive and adaptive approaches to signal processing problems in nondestructive evaluation. Pattern Recognit. Lett. 2, 387–394 (1984)

    Article  Google Scholar 

  121. Vi-Tong, E., Gaillard, P.: An algorithm for non-supervised sequential classification of signals. Pattern Recognit. Lett. 5, 307–313 (1987)

    Article  Google Scholar 

  122. Ramirez-Jimenez, C.R., Papadakis, N., Reynolds, N., Gan, T.H., Purnell, P., Pharaoh, M.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos. Sci. Technol. 64, 1819–1827 (2004)

    Article  Google Scholar 

  123. Marec, A., Thomas, J.-H., Guerjouma, R.: Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 22, 1441–1464 (2008)

    Article  Google Scholar 

  124. Sause, M.G.R., Haider, F., Horn, S.: Quantification of metallic coating failure on carbon fiber reinforced plastics using acoustic emission. Surf. Coat. Technol. 204, 300–308 (2009)

    Article  Google Scholar 

  125. Sause, M.G.R., Gribov, A., Unwin, A.R., Horn, S.: Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit. Lett. 33, 17–23 (2012)

    Article  Google Scholar 

  126. Doan, D.D., Ramasso, E., Placet, V., Boubakar, L., Zerhouni, N.: Application of an unsupervised pattern recognition approach for AE data originating from fatigue tests on CFRP. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

  127. Anastassopoulos, A.A., Nikolaidis, V.N., Philippidis, T.P.: A comparative study of pattern recognition algorithms for classification of ultrasonic signals. Neural Comput. Appl. 8, 53–66 (1999)

    Article  Google Scholar 

  128. Yu, P., Anastassopoulos, V., Venetsanopoulos, A.N.: Pattern recognition based on morphological shape analysis and neural networks. Math. Comput. Simul. 40, 577–595 (1996)

    Article  Google Scholar 

  129. Baensch, F., Sause, M.G.R., Brunner, A.J., Niemz, P.: Damage evolution in wood—pattern recognition based on acoustic emission (AE) frequency spectra. Holzforschung 69, 1–9 (2015)

    Article  Google Scholar 

  130. Kostopoulos, V., Loutas, T., Kontsos, A., Sotiriadis, G., Pappas, Y.: On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT E Int. 36, 571–580 (2003)

    Article  Google Scholar 

  131. Bohse, J., Chen, J.: Acoustic emission examination of mode I, mode II and mixed-mode I/II interlaminar fracture of unidirectional fiber-reinforced polymers. J. Acoust. Emiss. 19, 1–10 (2001)

    Google Scholar 

  132. Haselbach, W., Lauke, B.: Acoustic emission of debonding between fibre and matrix to evaluate local adhesion. Compos. Sci. Technol. 63, 2155–2162 (2003)

    Article  Google Scholar 

  133. Li, L., Lomov, S.V., Yan, X., Carvelli, V.: Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites. Compos. Struct. 116, 286–299 (2014)

    Article  Google Scholar 

  134. Li, L., Lomov, S.V., Yan, X.: Correlation of acoustic emission with optically observed damage in a glass/epoxy woven laminate under tensile loading. Compos. Struct. 123, 45–53 (2015)

    Article  Google Scholar 

  135. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon, Oxford (1995)

    Google Scholar 

  136. Polikar, R.: Pattern recognition. In: Akay, M. (ed.) Wiley Encyclopedia of Biomedical Engineering, pp. 1–22. Wiley, Hoboken (2006)

    Google Scholar 

  137. Sause, M.G.R., Schultheiß, D., Horn, S.: Acoustic emission investigation of coating fracture and delamination in hybrid carbon fiber reinforced plastic structures. J. Acoust. Emiss. 26, 1–13 (2008)

    Google Scholar 

  138. Sause, M.G.R., Müller, T., Horoschenkoff, A., Horn, S.: Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos. Sci. Technol. 72, 167–174 (2012)

    Article  Google Scholar 

  139. Ritschel, F., Sause, M.G.R., Brunner, A.J., Niemz, P.: Acoustic emission (AE) signal classification from tensile tests on plywood and layered wood. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–7. Dresden, Germany (2014)

    Google Scholar 

  140. Vergeynst, L.L., Sause, M.G.R., Steppe, K.: Acoustic emission signal detection in drought-stressed trees: beyond counting hits. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

  141. Njuhovic, E., Bräu, M., Wolff-Fabris, F., Starzynski, K., Altstädt, V.: Identification of interface failure mechanisms of metallized glass fibre reinforced composites using acoustic emission analysis. Compos. Part B Eng. 66, 443–452 (2014)

    Article  Google Scholar 

  142. Kempf, M., Skrabala, O., Altstädt, V.: Acoustic emission analysis for characterisation of damage mechanisms in fibre reinforced thermosetting polyurethane and epoxy. Compos. Part B Eng. 56, 477–483 (2014)

    Article  Google Scholar 

  143. Priess, T., Sause, M.G., Fischer, D., Middendorf, P.: Detection of delamination onset in laser-cut carbon fiber transverse crack tension specimens using acoustic emission. J. Compos. Mater. 49, 2639–2647 (2015)

    Article  Google Scholar 

  144. Tou, J.T.: DYNOC—a dynamic optimal cluster-seeking technique. Int. J. Comput. Inf. Sci. 8, 541–547 (1979)

    Article  Google Scholar 

  145. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  146. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  147. Hubert, L.J., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  148. Günter, S., Bunke, H.: Validation indices for graph clustering. Pattern Recognit. Lett. 24, 1107–1113 (2003)

    Article  Google Scholar 

  149. Placet, V., Ramasso, E., Boubakar, L., Zerhouni, N.: Online segmentation of acoustic emission data streams for detection of damages in composites structures in unconstrained environments. In: 11th International Conference on Structural Safety & Reliability, pp. 1–8. New York, USA (2013)

    Google Scholar 

  150. Serir, L., Ramasso, E., Zerhouni, N.: Evidential evolving Gustafson–Kessel algorithm for online data streams partitioning using belief function theory. Int. J. Approx. Reason. 53, 747–768 (2012)

    Article  Google Scholar 

  151. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  152. Baensch, F., Zauner, M., Sanabria, S.J., Sause, M.G.R., Pinzer, B.R., Brunner, A.J., Stampanoni, M., Niemz, P.: Damage evolution in wood: synchrotron radiation micro-computed tomography (SRμCT) as a complementary tool for interpreting acoustic emission (AE) behavior. Holzforschung 69 (2015)

    Google Scholar 

  153. Eaton, M.J., Holford, K.M., Featherston, C.A., Pullin, R.: Damage in carbon fibre composites: the discrimination of acoustic emission signals using frequency. J. Acoust. Emiss. 25, 140–148 (2007)

    Google Scholar 

  154. Sause, M.G.R., Horn, S.: Quantification of the uncertainty of pattern recognition approaches applied to acoustic emission signals. J. Nondestruct. Eval. 32, 242–255 (2013)

    Article  Google Scholar 

  155. Milligan, G.W.: An algorithm for generating artificial test clusters. Psychometrika 50, 123–127 (1985)

    Article  Google Scholar 

  156. Qiu, W., Joe, H.: Generation of random clusters with specified degree of separation. J. Classif. 23, 315–334 (2006)

    Article  Google Scholar 

  157. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  158. Kalafat, S., Sause, M.G.R.: Localization of acoustic emission sources in fiber composites using artificial neural networks. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

  159. Sause, M.G.R., Kalafat, S., Zelenyak, A., Hoeck, B., Horn, S.: Acoustic emission source localization in bearing tests of fiber reinforced polymers by neural networks. In: 16th International Conference on Experimental Mechanics, pp. 1–3. Cambridge (2014)

    Google Scholar 

  160. Plöckl, M., Sause, M.G.R., Scharringhausen, J., Horn, S.: Failure analysis of NOL-ring specimens by acoustic emission. In: 30th European Conference on Acoustic Emission, pp. 1–12. Granada, Spain (2012)

    Google Scholar 

  161. Kurz, J.H.: Verifikation von Bruchprozessen bei gleichzeitiger Automatisierung der Schallenmissionsanalyse an Stahl- und Stahlfaserbeton. University of Stuttgart, Stuttgart (2006)

    Google Scholar 

  162. Akaike, H.: Markovian representation of stochastic process and its application to the analysis of autoregressive moving average processes. Ann. Inst. Stat. Math. 26, 363–387 (1974)

    Article  Google Scholar 

  163. Kühnicke, H., Schulze, E., Voigt, D.: Verbesserte Lokalisation mittels Signalformanalyse. In: DGZfP-BB, pp. 44–51 (2007)

    Google Scholar 

  164. Hamstad, M.A.: Comparison of wavelet transform and Choi-Williams distribution to determine group velocities for different acoustic emission sensors. J. Acoust. Emiss. 26, 40–59 (2008)

    Google Scholar 

  165. Hamstad, M.A., O’Gallagher, A.: Effects of noise on Lamb-mode acoustic-emission arrival times determined by wavelet transform. J. Acoust. Emiss. 23, 1–24 (2005)

    Google Scholar 

  166. Bancroft, S.: An algebraic solution of the GPS equations. IEEE Trans. Aerosp. Electron. Syst. 21, 56–59 (1985)

    Article  Google Scholar 

  167. Pullin, R., Baxter, M., Eaton, M.M.J., Holford, K.M., Evans, S.L.: Novel acoustic emission source location. J. Acoust. Emiss. 25, 215–223 (2007)

    Google Scholar 

  168. Eaton, M.J., Pullin, R., Holford, K.M., Featherston, C.A.: AE wave propagation and novel source location in composite plates. In: 28th European Conference on Acoustic Emission Testing, Berlin, Germany (2008)

    Google Scholar 

  169. Baxter, M.G., Pullin, R., Holford, K.M., Evans, S.L.: Delta T source location for acoustic emission. Mech. Syst. Signal Process. 21, 1512–1520 (2007)

    Article  Google Scholar 

  170. Eaton, M.J., Pullin, R., Holford, K.M.: Acoustic emission source location in composite materials using Delta T Mapping. Compos. Part A Appl. Sci. Manuf. 43, 856–863 (2012)

    Article  Google Scholar 

  171. Chlada, M., Prevorovsky, Z., Blahacek, M.: Neural network AE source location apart from structure size and material. J. Acoust. Emiss. 28, 99–108 (2010)

    Google Scholar 

  172. Blahacek, M., Chlada, M., Prevorovsky, Z.: Acoustic emission source location based on signal features. Adv. Mater. Res. 13–14, 77–82 (2006)

    Article  Google Scholar 

  173. Kalafat, S., Sause, M.G.R.: Lokalisierung von Schallemissionsquellen in Faserverbundwerkstoffen mit künstlichen neuronalen Netzwerken. In: 19. Kolloquium Schallemission, pp. 1–8. Augsburg, Germany (2013)

    Google Scholar 

  174. Kalafat, S., Sause, M.G.: Acoustic emission source localization by artificial neural networks. Struct. Heal. Monit. 1–15 (2015).

    Google Scholar 

  175. Balageas, D., Fritzen, C.-P., Gemes, A.: Structural Health Monitoring. ISTE, London (2006)

    Book  Google Scholar 

  176. Ciang, C.C., Lee, J.-R., Bang, H.-J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci. Technol. 19, 122001 (2008)

    Article  Google Scholar 

  177. Sause, M.G.R., Horn, S.R.: Influence of specimen geometry on acoustic emission signals in fiber reinforced composites: FEM-simulations and experiments. In: 29th European Conference on Acoustic Emission Testing, pp. 1–8. Vienna, Austria (2010)

    Google Scholar 

  178. Sause, M.G.R., Scharringhausen, J., Horn, S.R.: Identification of failure mechanisms in thermoplastic composites by acoustic emission measurements. In: 19th International Conference on Composite Materials, Montreal, Canada (2013)

    Google Scholar 

  179. Burks, B., Kumosa, M.: A modal acoustic emission signal classification scheme derived from finite element simulation. Int. J. Damage Mech. 23, 43–62 (2013)

    Article  Google Scholar 

  180. Pahr, D.H., Rammerstorfer, F.G., Rosenkranz, P., Humer, K., Weber, H.W.: A study of short-beam-shear and double-lap-shear specimens of glass fabric/epoxy composites. Compos. Part B Eng. 33, 125–132 (2002)

    Article  Google Scholar 

  181. Sause, M.G.R., Plöckl, M., Horn, S.R., Forberich, B., Scharringhausen, J.: Bestimmung der GIc und GIIc Kennwerte von thermoplastischen Faserverbundwerkstoffen mittels Schallemissionsanalyse. In: Verbundwerkstoffe und Werkstoffverbunde 2013, Bayreuth, Germany (2013)

    Google Scholar 

  182. Spruiell, J.E.: A Review of the Measurement and Development of Crystallinity and Its Relation to Properties in Neat Poly(Phenylene Sulfide) and Its Fiber Reinforced Composites. Oak Ridge, Tennesse, USA (2005)

    Google Scholar 

  183. Hahn, H.T., Lagace, P.A., O’Brien, T.K.: Composite Materials: Fatigue and Fracture. ASTM International, West Conshohocken (1991)

    Google Scholar 

  184. Wisnom, M.R.: On the increase in fracture energy with thickness in delamination of unidirectional glass fibre-epoxy with cut central plies. J. Reinf. Plast. Compos. 11, 897–909 (1992)

    Article  Google Scholar 

  185. Cui, W., Wisnom, M.R., Jones, M.: An experimental and analytical study of delamination of unidirectional specimens with cut central plies. J. Reinf. Plast. Compos. 13, 722–739 (1994)

    Article  Google Scholar 

  186. Sause, M.G.R., Monden, A.: Comparison of predicted onset of failure mechanisms by nonlinear failure theory and by acoustic emission measurements. In: 16th European Conference on Composite Materials. Sevilla, Spain (2014)

    Google Scholar 

  187. Scott, A.E., Mavrogordato, M., Wright, P., Sinclair, I., Spearing, S.M.: In-situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography. Compos. Sci. Technol. 71, 1471–1477 (2011)

    Article  Google Scholar 

  188. Zhou, Y., Jiang, D., Xia, Y.: Tensile mechanical behavior of T300 and M40J fiber bundles at different strain rate. J. Mater. Sci. 36, 919–922 (2001)

    Article  Google Scholar 

  189. Durand, L.P.: Composite Materials Research Progress. Nova Science, New York (2008)

    Google Scholar 

  190. Lomov, S., Karahan, M., Bogdanovich, A., Verpoest, I.: Monitoring of acoustic emission damage during tensile loading of 3D woven carbon/epoxy composites. Text. Res. J. 84, 1373–1384 (2014)

    Article  Google Scholar 

  191. Nairn, J.A., Hu, S.: The formation and effect of outer-ply microcracks in cross-ply laminates: a variational approach. Eng. Fract. Mech. 41, 203–221 (1992)

    Article  Google Scholar 

  192. Nairn, J., Hu, S.: The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int. J. Fract. 57, 1–24 (1992)

    Article  Google Scholar 

  193. Matthias Deuschle, H., Kroplin, B.-H.: Finite element implementation of Puck’s failure theory for fibre-reinforced composites under three-dimensional stress. J. Compos. Mater. 46, 2485–2513 (2012)

    Article  Google Scholar 

  194. Deuschle, H.M.: 3D Failure Analysis of UD Fibre Reinforced Composites: Puck’s Theory Within FEA. PhD-thesis, University of Stuttgart (2010)

    Google Scholar 

  195. Puck, A., Mannigel, M.: Physically based stress-strain relations for the inter-fibre-fracture analysis of FRP laminates. Compos. Sci. Technol. 67, 1955–1964 (2007)

    Article  Google Scholar 

  196. Puck, A., Mannigel, M.: Physically based non-linear stress-strain relations for the inter-fibre fracture analysis of FRP laminates. Compos. Sci. Technol. 67, 1955–1964 (2007)

    Article  Google Scholar 

  197. Wisnom, M.R.: Size effects in the testing of fibre-composite materials. Compos. Sci. Technol. 59, 1937–1957 (1999)

    Article  Google Scholar 

  198. Moosburger-Will, J., Sause, M.G.R., Horny, R., Horn, S., Scholler, J., Llopard Prieto, L.: Joining of carbon fiber reinforced polymer laminates by a novel partial cross-linking process. J. Appl. Polym. Sci. 132, 42159 (2015)

    Article  Google Scholar 

  199. Bohse, J., Chen, J., Brunner, A.: Acoustic emission analysis and micro-mechanical interpretation of mode I fracture toughness tests on composite materials. Fract. Polym. Compos. Adhes. 27, 15–26 (2000)

    Google Scholar 

  200. Carlsson, L.A., Gillespie, J.W., Trethewey, B.R.: Mode II interlaminar fracture of graphite/epoxy and graphite/PEEK. J. Reinf. Plast. Compos. 5, 170–187 (1986)

    Article  Google Scholar 

  201. Kaiser, J.: Untersuchungen über das Auftreten von Geräuschen beim Zugversuch. Dissertation, Technische Hochschule München (1950)

    Google Scholar 

  202. Fowler, T.J.: Acoustic emission testing of fiber reinforced plastics. In: Preprint 3092. American Society of Civil Engineers, New York (1977)

    Google Scholar 

  203. Fowler, T.J.: Acoustic Emission Testing of Fiber Reinforced Plastics. Proc. Pap. J. Tech. Counc. ASCE. 105(TC2), 281–289 (1979)

    Google Scholar 

  204. Rodriguez, G.: Development and implementation of a testing concept for the bearing of a carbon fiber shaft. Thesis, Technical University Munich (2013)

    Google Scholar 

  205. Tonatto, M.L.P., Faria, H., Marques, A.T., Amico, S.C.: Effect of environmental conditioning on burst pressure of carbon/epoxy filament wound composite. In: 16th European Conference on Composite Materials, pp. 22–26. Sevilla, Spain (2014)

    Google Scholar 

  206. Hill, E.K., Dion, S.T., Karl, J.O., Spivey, N.S., Ii, J.L.W.: Neural network burst pressure prediction in composite overwrapped pressure vessels. Neural Netw. 25, 187–193 (2007)

    Google Scholar 

  207. Walker, J.L., Workman, G.L., Russell, S.S., Hill, E.V.K.: Neural network/acoustic emission burst pressure prediction for impact damaged composite pressure vessels. Mater. Eval. 55 (1997)

    Google Scholar 

  208. Gorman, M.R.: Burst prediction by acoustic emission in filament-wound pressure vessels. J. Acoust. Emiss. 9, 131–139 (1990)

    Google Scholar 

  209. Hamstad, M.A., Patterson, R.G.: Considerations for acoustic emission monitoring of spherical kevlar/epoxy composite pressure vessels. In: ASME Energy Technology Conference on Composites in Pressure Vessels and Piping, Houston, TX, USA (1977)

    Google Scholar 

  210. Bunsell, A.R., Thionnet, A.: Life prediction for carbon fibre filament wound composite structures. Philos. Mag. 90, 4129–4146 (2010)

    Article  Google Scholar 

  211. Dong, L., Mistry, J.: Acoustic emission monitoring of composite cylinders. Compos. Struct. 40, 43–53 (1997)

    Article  Google Scholar 

  212. Höck, B., Regnet, M., Bickelmaier, S., Henne, F., Sause, M.G.R., Schmidt, T., Geiss, G.: Innovative and efficient manufacturing technologies for highly advanced composite pressure vessels. In: Proceedings of 13th European Conference on Spacecraft Structures, Materials + Environmental Testing, Braunschweig, Germany (2014)

    Google Scholar 

  213. Hamstad, M.A., Sause, M.G.R.: Acoustic emission signals versus propagation direction for hybrid composite layup with large stiffness differences versus direction. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

  214. Burks, B., Hamstad, M.A: On the anisotropic attenuation behavior of the flexure mode of carbon fiber composites. In: 19th International Conference on Composite Materials, pp. 1–9. Montreal, Canada (2013)

    Google Scholar 

  215. Burks, B., Hamstad, M.A.: The impact of solid–fluid interaction on transient stress wave propagation due to Acoustic Emissions in multi-layer plate structures. Compos. Struct. 117, 411–422 (2014)

    Article  Google Scholar 

  216. Hamstad, M.A.: A waveform-based study of AE wave propagation by use of eight wide-band sensors on a composite pressure vessel. In: 30th European Conference on Acoustic Emission, pp. 12–15. Granada, Spain (2012)

    Google Scholar 

  217. Henne, F., Ehard, S., Kollmannsberger, A., Hoeck, B., Sause, M., Drechsler, K.: Thermoplastic in-situ fiber placement for future solid rocket motor casing manufacturing. In: SAMPE Europe SETEC 14—Efficient Composite Solutions to Foster Economic Growth, Tampere, Finland (2014)

    Google Scholar 

  218. Fowler, T.J.: The origin of CARP and the term “Felicity Effect”. In: 31st Conference of the European Working Group on Acoustic Emission, pp. 1–8. Dresden, Germany (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sause, M.G.R. (2016). Acoustic Emission. In: In Situ Monitoring of Fiber-Reinforced Composites. Springer Series in Materials Science, vol 242. Springer, Cham. https://doi.org/10.1007/978-3-319-30954-5_4

Download citation

Publish with us

Policies and ethics