Skip to main content

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 4))

  • 1004 Accesses

Abstract

In 1870, Georg Cantor proved that if a trigonometric series converges to 0 everywhere, then all its coefficients must be 0. In the twentieth century this result was extended to higher dimensional trigonometric series when the mode of convergence is taken to be spherical convergence and also when it is taken to be unrestricted rectangular convergence. We will describe the path to each result. An important part of the first path was Victor Shapiro’s seminal 1957 paper, Uniqueness of multiple trigonometric series. This paper also was an unexpected part of the second path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Ash, A new, harder proof that continuous functions with Schwarz derivative 0 are lines, in Contemporary Aspects of Fourier Analysis, ed. by W.O. Bray, C.V. Stanojevic, Pure and Appl. Math. vol. 157 (1994). Marcel Dekker, New York, pp. 35–46

    Google Scholar 

  2. J.M. Ash, Uniqueness for Spherically Convergent Multiple Trigonometric Series, ed. by G. Anastassiou. Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC, Boca Raton, 2000), pp. 309–355

    Google Scholar 

  3. J.M. Ash, Uniqueness for higher dimensional trigonometric series. Cubo 4, 97–125 (2002)

    MathSciNet  Google Scholar 

  4. J.M. Ash, C. Freiling, D. Rinne, Uniqueness of rectangularly convergent trigonometric series. Ann. Math. 137, 145–166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.M. Ash, G. Wang, A survey of uniqueness questions in multiple trigonometric series, in A Conference in Harmonic Analysis and Nonlinear Differential Equations in Honor of Victor L. Shapiro, vol. 208. Contemporary Mathematics (1997), pp. 35–71

    Google Scholar 

  6. J.M. Ash, G. Wang, One and two dimensional Cantor-Lebesgue type theorems. Trans. Am. Math. Soc. 349, 1663–1674 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.M. Ash, G.V. Welland, Convergence, uniqueness, and summability of multiple trigonometric series. Trans. Am. Math. Soc. 163, 401–436 (1972). MR 45 # 9057

    Google Scholar 

  8. J. Bourgain, Spherical summation and uniqueness of multiple trigonometric series. Int. Math. Res. Not. 1996, 93–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Cantor, Beweis, das eine fur jeden reellen Wert von x durch eine trigonometrische Reihe gegebene Funktion f(x) sich nur auf eine einzige Weise in dieser Form darstellen lasst, Crelles J. fuir Math. 72, 139–142 (1870); also in Georg Olms, Gesammelte Abhandlungen, Hildesheim, 1962, pp. 80–83

    Google Scholar 

  10. P.J. Cohen, Topics in the theory of uniqueness of trigonometrical series, doctoral thesis, University of Chicago, Chicago, IL (1958)

    Google Scholar 

  11. B. Connes, Sur les coefficients des séries trigonometriques convergents sphériquement. CRA Sc Paris t. Ser. A 283, 159–161 (1976)

    MATH  Google Scholar 

  12. R.L. Cooke, A Cantor-Lebesgue theorem in two dimensions. Proc. Am. Math. Soc. 30, 547–550 (1971). MR 43 #7847

    Google Scholar 

  13. Mathematics Genealogy Project. http://genealogy.math.ndsu.nodak.edu/

  14. V.L. Shapiro, Uniqueness of multiple trigonometric series. Ann. Math. 66, 467–480 (1957). MR 19, 854; 1432

    Google Scholar 

  15. S. Tetunashvili, On some multiple function series and the solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series. Mat. Sb. 182, 1158–1176 (1991) (Russian), Math. USSR Sbornik 73, 517–534 (1992) (English). MR 93b:42022

    Google Scholar 

  16. A. Zygmund, Trigonometric Series, 2nd edn. vol. 1 (Cambridge University Press, Cambridge, 1958)

    Google Scholar 

  17. A. Zygmund, A Cantor-Lebesgue theorem for double trigonometric series. Stud. Math. 43, 173–178 (1972). MR 47 #711

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by a grant from the Faculty and Development Program of the College of Liberal Arts and Sciences, DePaul University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marshall Ash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ash, J.M. (2016). Victor Shapiro and the Theory of Uniqueness for Multiple Trigonometric Series. In: Pereyra, M., Marcantognini, S., Stokolos, A., Urbina, W. (eds) Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1). Association for Women in Mathematics Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-30961-3_5

Download citation

Publish with us

Policies and ethics