Skip to main content

Mesophase Formation in Isotactic Polypropylene Copolymers

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

The main results related to the mesophase formation in the different isotactic polypropylene (iPP) copolymers are reviewed in this chapter. It is shown that fast scanning calorimetry (FSC) is mandatory for analyzing the process at the lower comonomer contents. On the contrary, the cooling rates required for the relatively high contents fall in the typical range of conventional DSC experiments, so that the mesophase development can be much more easily investigated (although there is an obvious decrease of the degree of order). Additionally, diffraction experiments under real time conditions (by means of synchrotron radiation) are also examined, which are used for establishing the specific character of the phases implicated. The main conclusion is that the cooling rates necessary for obtaining the mesomorphic state decrease progressively with increasing counit content, although important differences are reported depending on the comonomer type. Thus, it is shown that the content and size of the counit are influencing in a different way the rate of mesophase development and the transition temperatures. FSC experiments for studying the corresponding crystallization and mesophase rates of formation under isothermal conditions on iPP and copolymers are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller A, Hikosaka M, Rastogi S, Toda A, Barham PJ, Goldbeckwood G (1994) An approach to the formation and growth of new phases with application to polymer crystallization - Effect of finite-size, metastability, and Ostwald rule of stages. J Mater Sci 29:2579–2604

    Article  Google Scholar 

  2. Keller A, Cheng SZD (1998) The role of metastability in polymer phase transitions. Polymer 39:4461–4487

    Article  Google Scholar 

  3. Cheng SZD, Zhu L, Li CY, Honigfort PS, Keller A (1999) Size effect of metastable states on semicrystalline polymer structures and morphologies. Thermochim Acta 332:105–113

    Article  Google Scholar 

  4. Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization? Eur Phys J E 3:165–183

    Article  Google Scholar 

  5. Strobl G (2006) Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31:398–442

    Article  Google Scholar 

  6. Fernandez-Blazquez JP, Perez-Manzano J, Bello A, Perez E (2007) The two crystallization modes of mesophase forming polymers. Macromolecules 40:1775–1778

    Article  Google Scholar 

  7. Noel C, Navard P (1991) Liquid-crystal polymers. Prog Polym Sci 16:55–110

    Article  Google Scholar 

  8. Finkelmann H, Rehage G (1984) Liquid-crystal side-chain polymers. Adv Polym Sci 60–1:97–172

    Google Scholar 

  9. Bello A, Perena JM, Perez E, Benavente R (1994) Thermotropic liquid-crystal polyesters derived from 4,4'-biphenyldicarboxylic acid and oxyalkylene spacers. Macromol Symp 84:297–306

    Article  Google Scholar 

  10. Martinez-Gomez A, Perez E, Bello A (2010) Polymesomorphism and orientation in liquid crystalline poly(triethylene glycol p, p'-bibenzoate). Colloid Polym Sci 288:859–867

    Article  Google Scholar 

  11. Djezzar K, Penel L, Lefebvre JM, Seguela R, Germain Y (1998) Tensile drawing of ethylene/vinyl-alcohol copolymers. Part 1. Influence of draw temperature on the mechanical behaviour. Polymer 39:3945–3953

    Article  Google Scholar 

  12. Penel L, Djezzar K, Lefebvre JM, Seguela R, Fontaine H (1998) Tensile drawing of ethylene vinyl alcohol copolymers: II. Investigation of the strain-induced mesomorphic structure. Polymer 39:4279–4287

    Article  Google Scholar 

  13. Cerrada ML, Benavente R, Perez E, Perena JM (2000) The effect of orientation on the morphology and viscoelastic response of vinyl alcohol-ethylene copolymers. Macromol Chem Phys 201:1858–1868

    Article  Google Scholar 

  14. Cerrada ML, Benavente R, Perez E, Perena JM (2001) The effect of tensile drawing on the structure and relaxation processes in vinyl alcohol-ethylene copolymers. Polymer 42:3127–3138

    Article  Google Scholar 

  15. Cerrada ML, Fauth F, Fernandez-Blazquez JP, Perez E (2010) Structural changes induced by deformation in an ethylene-(vinyl alcohol) copolymer: simultaneous measurements of uniaxial stretching and in situ wide-angle X-ray scattering. Polym Int 59:1141–1147

    Google Scholar 

  16. Vittoria V, Guadagno L, Comotti A, Simonutti R, Auriemma F, De Rosa C (2000) Mesomorphic form of syndiotactic polypropylene. Macromolecules 33:6200–6204

    Article  Google Scholar 

  17. Grasruck M, Strobl G (2003) Crystallization of s-polypropylene from the glassy state: indications for a multistage process. Macromolecules 36:86–91

    Article  Google Scholar 

  18. Slichter WP, Mandell ER (1958) Molecular motion in polypropylene, isotactic and atactic. J Appl Phys 29:1438–1441

    Article  Google Scholar 

  19. Miller RL (1960) On the existence of near-range order in isotactic polypropylenes. Polymer 1:135–143

    Article  Google Scholar 

  20. Hosemann R, Wilke W (1968) Lattice imperfections in polyethylene. Makromol Chem 118:230–249

    Article  Google Scholar 

  21. McAllister PB, Carter TJ, Hinde RM (1978) Structure of quenched form of polypropylene. J Polym Sci, Part B: Polym Phys 16:49–57

    Google Scholar 

  22. Grebowicz J, Lau SF, Wunderlich B (1984) The thermal properties of polypropylene. J Polym Sci Polym Symp 71:19–37

    Article  Google Scholar 

  23. Corradini P, Derosa C, Guerra G, Petraccone V (1989) Comments on the possibility that the mesomorphic form of isotactic polypropylene is composed of small crystals of the beta-crystalline form. Polymer Comm 30:281–285

    Google Scholar 

  24. Lotz B, Kopp S, Dorset D (1994) An original crystal structure of polymers with ternary helices. Comptes Rendus De L Academie Des Sciences Serie Ii 319:187–192

    Google Scholar 

  25. Arranz-Andres J, Benavente R, Perez E, Cerrada ML (2003) Structure and mechanical behavior of the mesomorphic form in a propylene-b-poly(ethylene-co-propylene) copolymer and its comparison with other thermal treatments. Polym J 35:766–777

    Article  Google Scholar 

  26. Auriemma F, De Rosa C, Corradini P (2005) Solid mesophases in semicrystalline polymers: structural analysis by diffraction techniques. Adv Polym Sci 181:1–74

    Article  Google Scholar 

  27. Corradini P, Auriemma F, De Rosa C (2006) Crystals and crystallinity in polymeric materials. Acc Chem Res 39:314–323

    Article  Google Scholar 

  28. Brückner S, Meille SV, Petraccone V, Pirozzi B (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16:361–404

    Article  Google Scholar 

  29. Bruckner S, Meille SV (1989) Non-parallel chains in crystalline gamma-isotactic polypropylene. Nature 340:455–457

    Article  Google Scholar 

  30. Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979–4992

    Article  Google Scholar 

  31. Hikosaka M, Sato N, Hasegawa M, Seto T (1973) Formation of oriented isotactic polypropylene gamma-form crystal through alpha-gamma-transition. Jpn J Appl Phys 12:1293

    Article  Google Scholar 

  32. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579

    Article  Google Scholar 

  33. Meille SV, Ferro DR, Bruckner S, Lovinger AJ, Padden FJ (1994) Structure of beta-isotactic polypropylene - a long-standing structural puzzle. Macromolecules 27:2615–2622

    Article  Google Scholar 

  34. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Isotactic polypropylene, beta-phase: a study in frustration. Polymer 39:6331–6337

    Article  Google Scholar 

  35. Phillips PJ, Mezghani K (1996) Polypropylene, isotactic (polymorphism). In: Salamone JC (ed) The polymeric materials encyclopedia, vol 9. CRC Press, Boca Raton, FL, p 6637

    Google Scholar 

  36. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Il Nuovo Cimento Series 10 15:40–51

    Article  Google Scholar 

  37. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  Google Scholar 

  38. Cerrada ML, Polo-Corpa MJ, Benavente R, Perez E, Velilla T, Quijada R (2009) Formation of the new trigonal polymorph in iPP-1-hexene copolymers. Competition with the mesomorphic phase. Macromolecules 42:702–708

    Article  Google Scholar 

  39. Krache R, Benavente R, Lopez-Majada JM, Perena JM, Cerrada ML, Perez E (2007) Competition between alpha, beta, and gamma polymorphs in beta-nucleated metallocenic isotactic polypropylene. Macromolecules 40:6871–6878

    Article  Google Scholar 

  40. Vittoria V (1986) Investigation of the structure of isotactic polypropylene via transport properties. J Polym Sci, Part B: Polym Phys 24:451–455

    Article  Google Scholar 

  41. Russo R, Vittoria V (1996) Determination of intrinsic birefringence of smectic phase in isotactic polypropylene. J Appl Polym Sci 60:955–961

    Article  Google Scholar 

  42. K-h N, Odaka K (2009) Influence of structural organization on tensile properties in mesomorphic isotactic polypropylene. Polymer 50:4080–4088

    Article  Google Scholar 

  43. Brucato V, Piccarolo S, La Carrubba V (2002) An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci 57:4129–4143

    Article  Google Scholar 

  44. Perez E, Gomez-Elvira JM, Benavente R, Cerrada ML (2012) Tailoring the formation rate of the mesophase in random propylene-co-1-pentene copolymers. Macromolecules 45:6481–6490

    Article  Google Scholar 

  45. Vittoria V (1986) Investigation of the structure of isotactic polypropylene via transport properties. J Polym Sci, Part B: Polym Phys 24:451–455

    Article  Google Scholar 

  46. Okane WJ, Young RJ, Ryan AJ, Bras W, Derbyshire GE, Mant GR (1994) Simultaneous SAXS/WAXS and DSC analysis of the melting and recrystallization behavior of quenched polypropylene. Polymer 35:1352–1358

    Article  Google Scholar 

  47. Zia Q, Androsch R, Radusch H-J, Piccarolo S (2006) Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  Google Scholar 

  48. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2011) Isotropization, perfection and reorganization of the mesophase of isotactic polypropylene. Thermochim Acta 522:100–109

    Article  Google Scholar 

  49. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13

    Article  Google Scholar 

  50. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S et al (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45

    Article  Google Scholar 

  51. Vanden Poel G, Istrate D, Magon A, Mathot V (2012) Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim 110:1533–1546

    Article  Google Scholar 

  52. Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Nonisothermal crystallization of polytetrafluoroethylene in a wide range of cooling rates. J Phys Chem B 117:3407–3415

    Article  Google Scholar 

  53. Mileva D, Androsch R, Zhuravlev E, Schick C (2009) Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 42:7275–7278

    Article  Google Scholar 

  54. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567

    Article  Google Scholar 

  55. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031

    Article  Google Scholar 

  56. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662

    Article  Google Scholar 

  57. Poon B, Rogunova M, Hiltner A, Baer E, Chum SP, Galeski A et al (2005) Structure and properties of homogeneous copolymers of propylene and 1-hexene. Macromolecules 38:1232–1243

    Article  Google Scholar 

  58. Gahleitner M, Jaaskelainen P, Ratajski E, Paulik C, Reussner J, Wolfschwenger J et al (2005) Propylene-ethylene random copolymers: comonomer effects on crystallinity and application properties. J Appl Polym Sci 95:1073–1081

    Article  Google Scholar 

  59. Lopez-Majada JM, Palza H, Guevara JL, Quijada R, Martinez MC, Benavente R et al (2006) Metallocene copolymers of propene and 1-hexene: the influence of the comonomer content and thermal history on the structure and mechanical properties. J Polym Sci, Part B: Polym Phys 44:1253–1267

    Article  Google Scholar 

  60. Palza H, López-Majada JM, Quijada R, Pereña JM, Benavente R, Pérez E et al (2008) Comonomer length influence on the structure and mechanical response of metallocenic polypropylenic materials. Macromol Chem Phys 209:2259–2267

    Article  Google Scholar 

  61. Arranz-Andres J, Pena B, Benavente R, Perez E, Cerrada ML (2007) Influence of isotacticity and molecular weight on the properties of metallocenic isotactic polypropylene. Eur Polym J 43:2357–2370

    Article  Google Scholar 

  62. Polo-Corpa MJ, Benavente R, Velilla T, Quijada R, Perez E, Cerrada ML (2010) Development of the mesomorphic phase in isotactic propene/higher alpha-olefin copolymers at intermediate comonomer content and its effect on properties. Eur Polym J 46:1345–1354

    Article  Google Scholar 

  63. Poon B, Rogunova M, Chum SP, Hiltner A, Baer E (2004) Classification of homogeneous copolymers of propylene and 1-octene based on comonomer content. J Polym Sci, Part B: Polym Phys 42:4357–4370

    Article  Google Scholar 

  64. De Rosa C, Auriemma F, De Ballesteros OR, Resconi L, Carnurati I (2007) Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo and regioregularity by metallocene catalysts. Chem Mater 19:5122–5130

    Article  Google Scholar 

  65. Mileva D, Androsch R, Cavallo D, Alfonso GC (2012) Structure formation of random isotactic copolymers of propylene and 1-hexene or 1-octene at rapid cooling. Eur Polym J 48:1082–1092

    Article  Google Scholar 

  66. Spaleck W (2000) In: Scheirs J, Kaminski W (eds) Metallocene-based polyolefins: preparation, properties and technology. Wiley, New York, p 425

    Google Scholar 

  67. Pasquini N (2005) Polypropylene Handbook. Carl Hanser Verlag, Munich

    Google Scholar 

  68. Arranz-Andres J, Parrilla R, Cerrada ML, Perez E (2013) Mesophase formation in random propylene-co-1-octene copolymers. Macromolecules 46:8557–8568

    Article  Google Scholar 

  69. Lotz B, Ruan J, Thierry A, Alfonso GC, Hiltner A, Baer E et al (2006) A structure of copolymers of propene and hexene isomorphous to isotactic poly(1-butene) form I. Macromolecules 39:5777–5781

    Article  Google Scholar 

  70. De Rosa C, Dello Iacono S, Auriemma F, Ciaccia E, Resconi L (2006) Crystal structure of isotactic propylene-hexene copolymers: the trigonal form of isotactic polypropylene. Macromolecules 39:6098–6109

    Article  Google Scholar 

  71. De Rosa C, Auriemma F, Corradini P, Tarallo O, Dello Iacono S, Ciaccia E et al (2006) Crystal structure of the trigonal form of isotactic polypropylene as an example of density-driven polymer structure. J Am Chem Soc 128:80–81

    Article  Google Scholar 

  72. De Rosa C, Auriemma F, Talarico G, de Ballesteros OR (2007) Structure of isotactic propylene-pentene copolymers. Macromolecules 40:8531–8532

    Article  Google Scholar 

  73. De Rosa C, de Ballesteros OR, Auriemma F, Di Caprio MR (2012) Crystal structure of the trigonal form of isotactic propylene-pentene copolymers: an example of the principle of entropy-density driven phase formation in polymers. Macromolecules 45:2749–2763

    Article  Google Scholar 

  74. Stagnaro P, Costa G, Trefiletti V, Canetti M, Forlini F, Alfonso GC (2006) Thermal behavior, structure and morphology of propene/higher 1-olefin copolymers. Macromol Chem Phys 207:2128–2141

    Article  Google Scholar 

  75. Stagnaro P, Boragno L, Canetti M, Forlini F, Azzurri F, Alfonso GC (2009) Crystallization and morphology of the trigonal form in random propene/1-pentene copolymers. Polymer 50:5242–5249

    Article  Google Scholar 

  76. Perez E, Cerrada ML, Benavente R, Gomez-Elvira JM (2011) Enhancing the formation of the new trigonal polymorph in isotactic propene-1-pentene copolymers: determination of the X-ray crystallinity. Macromol Res 19:1179–1185

    Article  Google Scholar 

  77. Garcia-Penas A, Gomez-Elvira JM, Perez E, Cerrada ML (2013) Isotactic poly(propylene-co-1-pentene-co-1-hexene) terpolymers: synthesis, molecular characterization, and evidence of the trigonal polymorph. J Polym Sci, Part A: Polym Chem 51:3251–3259

    Article  Google Scholar 

  78. Boragno L, Stagnaro P, Forlini F, Azzurri F, Alfonso GC (2013) The trigonal form of i-PP in random C3/C5/C6 terpolymers. Polymer 54:1656–1662

    Article  Google Scholar 

  79. Choi CH, White JL (2000) Correlation and modeling of the occurrence of different crystalline forms of isotactic polypropylene as a function of cooling rate and uniaxial stress in thin and thick parts. Polym Eng Sci 40:645–655

    Article  Google Scholar 

  80. Cavallo D, Azzurri F, Floris R, Alfonso GC, Balzano L, Peters GW (2010) Continuous cooling curves diagrams of propene/ethylene random copolymers. The role of ethylene counits in mesophase development. Macromolecules 43:2890–2896

    Article  Google Scholar 

  81. Cavallo D, Portale G, Balzano L, Azzurri F, Bras W, Peters GW et al (2010) Real-time WAXD detection of mesophase development during quenching of propene/ethylene copolymers. Macromolecules 43:10208–10212

    Article  Google Scholar 

  82. Perez E, Zucchi D, Sacchi MC, Forlini F, Bello A (1999) Obtaining the gamma phase in isotactic polypropylene: effect of catalyst system and crystallization conditions. Polymer 40:675–681

    Article  Google Scholar 

  83. De Rosa C, Auriemma F, Di Girolamo R, Romano L, De Luca MR (2010) A new mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 43:8559–8569

    Article  Google Scholar 

  84. Mileva D, Androsch R (2012) Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid Polym Sci 290:465–471

    Article  Google Scholar 

  85. Mileva D, Androsch R, Radusch H-J (2008) Effect of cooling rate on melt-crystallization of random propylene-ethylene and propylene-1-butene copolymers. Polym Bull 61:643–654

    Article  Google Scholar 

  86. Mileva D, Androsch R, Zhuravlev E, Schick C (2009) Critical rate of cooling for suppression of crystallization in random copolymers of propylene with ethylene and 1-butene. Thermochim Acta 492:67–72

    Article  Google Scholar 

  87. Mileva D, Zia Q, Androsch R, Radusch H-J, Piccarolo S (2009) Mesophase formation in poly(propylene-ran-1-butene) by rapid cooling. Polymer 50:5482–5489

    Article  Google Scholar 

  88. Mileva D, Androsch R, Funari SS, Wunderlich B (2010) X-ray study of crystallization of random copolymers of propylene and 1-butene via a mesophase. Polymer 51:5212–5220

    Article  Google Scholar 

  89. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2011) Formation and reorganization of the mesophase of random copolymers of propylene and 1-butene. Polymer 52:1107–1115

    Article  Google Scholar 

  90. Mileva D, Cavallo D, Gardella L, Alfonso GC, Portale G, Balzano L et al (2011) In situ X-ray analysis of mesophase formation in random copolymers of propylene and 1-butene. Polym Bull 67:497–510

    Article  Google Scholar 

  91. Cavallo D, Gardella L, Alfonso GC, Mileva D, Androsch R (2012) Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher alpha-olefins. Polymer 53:4429–4437

    Article  Google Scholar 

  92. Jeon K, Palza H, Quijada R, Alamo RG (2009) Effect of comonomer type on the crystallization kinetics and crystalline structure of random isotactic propylene 1-alkene copolymers. Polymer 50:832–844

    Article  Google Scholar 

  93. Arranz-Andres J, Suarez I, Benavente R, Perez E (2011) Characterization and properties of ethylene-propylene copolymers synthesized with homogeneous and supported metallocene catalyst in the whole range of compositions. Macromol Res 19:351–363

    Article  Google Scholar 

  94. Ruiz-Orta C, Alamo RG (2012) Morphological and kinetic partitioning of comonomer in random propylene 1-butene copolymers. Polymer 53:810–822

    Article  Google Scholar 

  95. Cavallo D, Zhang L, Portale G, Alfonso GC, Janani H, Alamo RG (2014) Unusual crystallization behavior of isotactic polypropylene and propene/1-alkene copolymers at large undercoolings. Polymer 55:3234–3241

    Article  Google Scholar 

  96. Androsch R, Monami A, Kucera J (2014) Effect of an alpha-phase nucleating agent on the crystallization kinetics of a propylene/ethylene random copolymer at largely different supercooling. J Cryst Growth 408:91–96

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of MICINN and MINECO (Projects MAT2010-19883 and MAT2013-47972-C2-1-P, respectively) is gratefully acknowledged. Mr. A. García-Peñas is also grateful to MICINN for his FPI predoctoral grant. The synchrotron experiments were performed in the CRG beamline BM16 of the ESRF and in beamline BL11-NCD at ALBA Synchrotron Light Facility with the collaboration of BM16-ESRF and ALBA staff, respectively. The support from MICINN and MINECO for performing these measurements is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pérez, E., García-Peñas, A., Arranz-Andrés, J., Gómez-Elvira, J.M., Cerrada, M.L. (2016). Mesophase Formation in Isotactic Polypropylene Copolymers. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_16

Download citation

Publish with us

Policies and ethics