Skip to main content

Non-Adiabatic Scanning Calorimeter for Controlled Fast Cooling and Heating

  • Chapter
  • First Online:
Fast Scanning Calorimetry

Abstract

This chapter describes a power-compensated differential fast scanning calorimeter, which allows heat capacity determination of nanogram samples on both controlled heating and cooling in the range from 100 to 10,000,000 K/s. A submikron SiNx membrane sensor was developed together with Xensor Integration as a basis of the calorimeter. Minimizing addenda heat capacity and aiming particularly on fast cooling, the active measuring area of the sensor was embedded into the central part of the membrane and has dimensions down to 5 × 5 μm2. The differential power-compensated temperature control scheme was designed for precise temperature control and heat capacity determination. Software programmable temperature scans allow transitions from controlled heating and cooling up to 5 MK/s to isotherm with over/undershoot less than 1 K and within 2 ms. Though the absolute values of sample temperature and heat capacity determination is still complicated due to the free-standing sample configuration, they can be measured with reproducibility ±1 K and 1 pJ/K sensitivity, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson ES, O'Neill MO, Justin J, Brenner N (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem 36:1233–1238

    Article  Google Scholar 

  2. Pijpers MFJ, Mathot VBF, Goderis B, Scherrenberg R, van der Vegte E (2002) High-speed calorimetry for the analysis of kinetics of vitrification, crystallization, and melting of macromolecule. Macromolecules 35:3601–3613

    Article  Google Scholar 

  3. Wunderlich B (1973) Thermal analysis of polymers. J Therm Anal 5:117–136

    Article  Google Scholar 

  4. Mathot VBF, Poel GV, Pijpers TFJ, (2008) Chapter 8 benefits and potentials of high performance differential scanning calorimetry (HPer DSC), Handbook of Thermal Analysis and Calorimetry, Michael, E. Brown and Patrick K. Gallagher Eds. Elsevier Science B.V., 269–297

    Google Scholar 

  5. PlasticsEurope, EuPC (2014) EPRO, Plastic -the Facts 2014

    Google Scholar 

  6. Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611

    Article  Google Scholar 

  7. Poel GV, Mathot VBF (2006) High speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal Lag. Thermochim Acta 446:41–54

    Article  Google Scholar 

  8. Denlinger DW, Abarra EN, Allen K, Rooney PW, Messer MT, Watson SK, Hellman F (1994) Thin-film microcalorimeter for heat-capacity measurements from 1.5-K TO 800-K. Rev Sci Instrum 65:946–958

    Article  Google Scholar 

  9. Olson EA, Efremov MY, Zhang M, Zhang ZS, Allen LH (2003) The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J Microelectromech Syst 12:355–364

    Article  Google Scholar 

  10. Efremov MY, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry RS, Allen LH (2000) Discrete periodic melting point observations for nanostructure ensembles. Phys Rev Lett 85:3560–3563

    Article  Google Scholar 

  11. Minakov AA, Adamovsky SA, Schick C (2005) Non adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185

    Article  Google Scholar 

  12. Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7

    Article  Google Scholar 

  13. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63

    Article  Google Scholar 

  14. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78:073902–073910

    Article  Google Scholar 

  15. http://www.xensor.nl.

  16. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14–21

    Article  Google Scholar 

  17. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13

    Article  Google Scholar 

  18. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(epsilon caprolactone). Polymer 52:1983–1997, PCL

    Article  Google Scholar 

  19. Trujillo M, Arnal ML, Müller AJ, Mujica MA, Urbina de Navarro C, Ruelle B, Dubois P (2012) Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone). Polymer 53:832–841

    Article  Google Scholar 

  20. Minakov AA, Schick C (2015) Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta 603:205–217

    Article  Google Scholar 

  21. Müller A, Hernández Z, Arnal M, Sánchez J (1997) Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym Bull 39:465–472

    Article  Google Scholar 

  22. Zhuravlev E, Wurm A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ɛ -caprolactone)—multiwalled carbon nanotube composites. Eur Polym J 52:1–11

    Article  Google Scholar 

  23. Androsch R, Lorenzo MLD, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662

    Article  Google Scholar 

  24. Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Nonisothermal Crystallization of Polytetrafluoroethylene in a Wide Range of Cooling Rates. J Phys Chem B 117:3407–3415

    Article  Google Scholar 

  25. Lai SL, Ramanath G, Allen LH, Infante P, Ma Z (1995) High-speed. Appl Phys Lett 67:1229–1231, 10(4)-degrees-C/S) scanning microcalorimetry with monolayer sensitivity (J/M(2)

    Article  Google Scholar 

  26. Efremov MY, Olson EA, Zhang M, Schiettekatte F, Zhang Z, Allen LH (2004) Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev Sci Instrum 75:179–191

    Article  Google Scholar 

  27. Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sensors Actuators A Phys 143:256–264

    Article  Google Scholar 

  28. Lopeandía AF, Cerdó LI, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejoa J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76:065104

    Article  Google Scholar 

  29. Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–207

    Article  Google Scholar 

  30. Mettler T. Flash DSC. http://au.mt.com/au/en/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/Flash_DSC.html

  31. Gao YL, Zhuravlev E, Zou CD, Yang B, Zhai QJ, Schick C (2009) Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochim Acta 482:1–7

    Article  Google Scholar 

  32. Schick C, Hohne GWH (1991) On temperature calibration of power compensation DSC in cooling mode. Thermochim Acta 187:351–356

    Article  Google Scholar 

  33. Sarge SM, Hohne GWH, Cammenga HK, Eysel W, Gmelin E (2000) Temperature, heat and heat flow rate calibration of scanning calorimeters in the cooling mode. Thermochim Acta 361:1–20

    Article  Google Scholar 

  34. Cammenga HK, Eysel W, Gmelin E, Hemminger W, Hohne GWH, Sarge SM (1993) The temperature calibration of scanning calorimeters : Part 2. Calibration substances. Thermochim Acta 219:333–342

    Article  Google Scholar 

  35. Poel GV, Sargsyan A, Mathot V, Van Assche G, Wurm A, Schick C, Krumme A, Zhou D (2011) Recommendation for temperature calibration of fast scanning calorimeters (FsCs) for sample mass and scan rate. Beuth Verlag GmbH, Berlin

    Google Scholar 

  36. Merzlyakov M (2006) Method of rapid (100,000 K/s) controlled cooling and heating of thin samples. Thermochim Acta 442:52–60

    Article  Google Scholar 

  37. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim Acta 522:36–45

    Article  Google Scholar 

  38. Ahrenberg M, Brinckmann M, Schmelzer JWP, Beck M, Schmidt C, Keßler OH, Kragl U, Verevkin SP, Schick C (2014) Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry. Phys Chem Chem Phys 16:2971–2980

    Article  Google Scholar 

  39. Wunderlich B (1995) The athas database on heat capacities of polymers see on WWW URL: http://www.springermaterials.com/docs/athas.html. Pure Appl Chem 67:1019–1026

    Article  Google Scholar 

  40. Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14

    Article  Google Scholar 

  41. Zhuravlev E, Schmelzer JWP, Abyzov AS, Fokin VM, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15:786–798

    Article  Google Scholar 

  42. Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, München

    Google Scholar 

  43. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Formation and reorganization of the mesophase of isotactic polypropylene. Mol Cryst Liq Cryst 556:74–83

    Article  Google Scholar 

Download references

Acknowledgments

EZ acknowledges helpful discussions with A. A. Minakov, S. Adamovsky, and H. Huth. Financial support from Functional Materials Rostock eV and ADVATEC Marie Curie EST project (MEST-CT-2005-020986) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Zhuravlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhuravlev, E., Schick, C. (2016). Non-Adiabatic Scanning Calorimeter for Controlled Fast Cooling and Heating. In: Schick, C., Mathot, V. (eds) Fast Scanning Calorimetry. Springer, Cham. https://doi.org/10.1007/978-3-319-31329-0_2

Download citation

Publish with us

Policies and ethics