Skip to main content

PT Symmetric Classical and Quantum Cosmology

  • Conference paper
  • First Online:
Non-Hermitian Hamiltonians in Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 184))

Abstract

The classical cosmology of flat space can be realized in a phenomenological scalar field model for dark energy : a two-field model of quintessence and phantom fields. When the model is supplied by a proper field mixing term it becomes analytically solvable for exponential potentials. The motivation is given for replacing a phantom field by a normal pseudoscalar field with complex but PT-symmetric potential (PTom). The comparison of two approaches in their prediction for the fate of our Universe is done in figures. The quantum cosmology of flat space is realized in the Arnowitt-Deser-Misner approach by means of the Wheeler-DeWitt equations . Taking into account the isotropy and homogeneity of space the ADM approach is reduced to only quantized component of space-time metric—Friedmann-Robertson-Walker factor. The quantum models supplied with appropriate mixing kinetic terms turn out to be also integrable for exponential potentials and the exact analytical solutions are obtained for wave functionals of quantum PT symmetric cosmology . Lessons and perspectives for developing PT symmetric Classical and Quantum Cosmology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.A.R. Ade et al. [Planck Collaboration]: Planck 2015 results. XIII. Cosmological parameters. arXiv:1502.01589 [astro-ph.CO]

  2. P.A.R. Ade et al. [Planck Collaboration]: Planck 2015 results. XIV. Dark energy and modified gravity. arXiv:1502.01590 [astro-ph.CO]

  3. A.A. Starobinsky, Stochastic de Sitter (inflationary stage in the early universe), in Field Theory, Quantum Gravity and Strings, ed. by H.J. De Vega, N. Sanchez (1986), pp. 107–126; A.D. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990)

    Google Scholar 

  4. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9:4, 373–443 (2000). arXiv:astro-ph/9904398; V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 15(12), 2105–2132 (2006). arXiv:astro-ph/0610026; T. Padmanabhan, Phys. Rept. 380(5–6), 235–320 (2003). arXiv: hep-th/0212290; P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75(2), 559–606 (2003). arXiv: astro-ph/0207347; E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15(11), 1753–1936 (2006). arXiv:hep-th/0603057

  5. C. Kiefer, Quantum Gravity, II edn. (Oxford Uni.Press, 2007)

    Google Scholar 

  6. R.R. Caldwell, Phys. Lett. B 545, 23 (2002). arXiv:astro-ph/9908168

    Article  ADS  Google Scholar 

  7. A.Y. Kamenshchik, Class. Quant. Grav. 30, 173001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Y.F. Cai, E.N. Saridakis, M.R. Setare, J.Q. Xia, Phys. Rept. 493, 1 (2010). arXiv:0909.2776 [hep-th]

  9. A.A. Andrianov, O.O. Novikov, C. Lan, Theor. Math. Phys. 184, 1224 (2015). arXiv:1503.05527 [hep-th]

    Article  MathSciNet  Google Scholar 

  10. V. Muller, G.J. Schmidt, A.A. Starobinsky, Class. Quant. Grav. 7(7), 1163–1168 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Gorini, A.Y. Kamenshchik., U. Moschella, V. Pasquier. Phys. Rev. D 69(12), 123512 (2004). arXiv:hep-th/0311111

  12. L.P. Chimento, A.E. Cossarini, N.A. Zuccala, Class. Quant. Grav. 15(1), 57–74 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. P.K. Townsend, M.N.R. Wohlfarth, Phys. Rev. Lett. 91(6), 061302 (2003). arXiv:hep-th/0303097

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Emparan, J. Garriga, JHEP 0305, 028 (2003). arXiv:hep-th/0304124

    Article  ADS  MathSciNet  Google Scholar 

  15. C.M. Chen, P.M. Ho, I.P. Neupane, N. Ohta, J.E. Wang, JHEP 0310, 058 (2003). arXiv:hep-th/0306291

    Article  ADS  MathSciNet  Google Scholar 

  16. I.P. Neupane, Class. Quant. Grav. 21(18), 4383–4397 (2004). arXiv:hep-th/0311071

    Article  ADS  MathSciNet  Google Scholar 

  17. J.G. Russo, Phys. Lett. B 600(3–4), 185–190 (2004). arXiv:hep-th/0403010

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Ohta, Int. J. Mod. Phys. A 20, 1 (2005). arXiv:hep-th/0411230

    Article  ADS  Google Scholar 

  19. E. Dudas, N. Kitazawa, A. Sagnotti, Phys. Lett. B 694(1), 80 (2010). arXiv:1009.0874 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  20. A.A. Andrianov, F. Cannata, A.Y. Kamenshchik, JCAP 1110, 004 (2011). arXiv:1105.4515 [gr-qc]

  21. A.A. Andrianov, F. Cannata, A.Y. Kamenshchik, Phys. Rev. D 86(10), 107303 (2012)

    Article  ADS  Google Scholar 

  22. E. Piedipalumbo, P. Scudellaro, G. Esposito, C. Rubano, Gen.Rel.Grav. 44(10), 2611–2643 (2012). arXiv:1112.0502 [astro-ph.CO]

  23. A.A. Andrianov, F. Cannata, A.Y. Kamenshchik, J. Phys. A 39, 9975 (2006). arXiv:gr-qc/0604126

    Article  ADS  MathSciNet  Google Scholar 

  24. A.A. Andrianov, F. Cannata, A.Y. Kamenshchik, D. Regoli, Int. J. Mod. Phys. D 19, 97 (2010)

    Article  ADS  Google Scholar 

  25. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998). arXiv:physics/9712001

    Article  ADS  MathSciNet  Google Scholar 

  26. C.M. Bender, S. Boettcher, P. Meisinger, J. Math. Phys. 40, 2201 (1999). arXiv:quant-ph/9809072

  27. C.M. Bender, Rept. Prog. Phys. 70, 947 (2007). arXiv:hep-th/0703096 [HEP-TH]

  28. A. Mostafazadeh, J. Phys. A 36, 7081 (2003). arXiv:quant-ph/0304080

  29. A.O. Barvinsky, A.Y. Kamenshchik, Phys. Rev. D 89(4), 043526 (2014). arXiv:1312.3147 [gr-qc]

  30. T. Curtright, L. Mezincescu, J. Math. Phys. 48, 092106 (2007). arXiv:quant-ph/0507015

  31. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, VII edn. (Academic Press, 2007)

    Google Scholar 

Download references

Acknowledgments

The work is done with financial support by grants RFBR 13-02-00127 and 16-02-00348 as well as by the Saint Petersburg State University grant 11.41.775.2015. A.A. is grateful to the organizers of the 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics, Palermo for the hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Andrianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Andrianov, A.A., Lan, C., Novikov, O.O. (2016). PT Symmetric Classical and Quantum Cosmology. In: Bagarello, F., Passante, R., Trapani, C. (eds) Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-31356-6_3

Download citation

Publish with us

Policies and ethics