Skip to main content

Quantitation and Data Analysis in Hybrid PET/MRI Systems

  • Chapter
  • First Online:
PET-CT and PET-MRI in Neurology

Abstract

The aim of this chapter is to investigate quantitation and data analysis issues, in the context of a SWOT analysis applied to hybrid brain imaging. In particular, the strengths (S), weaknesses (W), opportunities (O) and threats (T) of PET/MRI with respect to PET/CT are considered. Strengths are found in (a) the high soft tissue contrast typical of MR imaging, allowing an improvement in PET quantitation by using MRI to guide PET reconstruction, to guide correction for partial volume effect and to non-invasively generate accurate input functions and (b) the amount of information on brain functioning and brain disease which can be obtained by PET/MRI multimodal and multi-parametric imaging. Weaknesses are recognized in the complexity of MRI (with respect to CT), making attenuation correction of PET data difficult and requiring long acquisition times and complex workflows. Main opportunity is found in the possibility to combine multimodal and multi-parametric data with advanced image processing methods for the identification and quantitation of biomarkers. Finally, as for PET/MRI technology, threats are the high costs, niche markets and slow translation from research to clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill T, Westbrook R (1997) SWOT analysis: It’s time for a product recall. Long Range Plann 30(1):46–52

    Article  Google Scholar 

  2. Zaidi H, Del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38(10):5667–5689

    Article  PubMed  Google Scholar 

  3. Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:450341

    PubMed  PubMed Central  Google Scholar 

  4. Yan J, Lim JC, Townsend DW (2015) MRI-guided brain PET image filtering and partial volume correction. Phys Med Biol 60:961–976

    Article  PubMed  Google Scholar 

  5. Lougovski A, Hofheinz F, Maus J, Schramm G, Will E, van den Hoff J (2014) A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction. Phys Med Biol 59(3):561–577

    Article  CAS  PubMed  Google Scholar 

  6. Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39:904–911

    CAS  PubMed  Google Scholar 

  7. Zaidi H, Ruest T, Schoenahl F, Montandon ML (2006) Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage 32(4):1591–1607

    Article  PubMed  Google Scholar 

  8. Moore SC, Southekal S, Park MA, McQuaid SJ, Kijewski MF, Müller SP (2012) Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and spillover effects. IEEE Trans Med Imaging 31(2):405–416

    Article  PubMed  PubMed Central  Google Scholar 

  9. Southekal S, McQuaid SJ, Kijewski MF, Moore SC (2012) Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest. Phys Med Biol 57(3):685–701

    Article  PubMed  PubMed Central  Google Scholar 

  10. Evans E, Sawiak SJ, Ward AO, Buonincontri G, Hawkes RC, Carpentera TA (2014) Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice. Nucl Instrum Methods Phys Res A 734(B):137–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andersen JB, Henning WS, Lindberg U, Ladefoged CN, Højgaard L, Greisen G, Law I (2015) Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labelling magnetic resonance imaging in newborn piglets. J Cereb Blood Flow Metab 35(11):1703–1710

    Article  PubMed  PubMed Central  Google Scholar 

  12. Werner P, Barthel H, Drzezga A, Sabri O (2015) Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging 42(3):512–526

    Article  CAS  PubMed  Google Scholar 

  13. Boellaard R, Quick HH (2015) Current image acquisition options in PET/MR. Semin Nucl Med 45(3):192–200

    Article  PubMed  Google Scholar 

  14. Aitken AP et al (2014) Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring. Med Phys 41(1):012302

    Article  CAS  PubMed  Google Scholar 

  15. Burgos N et al (2014) Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging 33(12):2332–2341

    Article  PubMed  Google Scholar 

  16. Hofmann M, Pichler B, Scholkopf B, Beyer T (2009) Towards quantitative PET/MRI: a review of MR based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S104

    Article  PubMed  Google Scholar 

  17. Marshall HR et al (2013) Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI. Med Phys 40(8):082509

    Article  PubMed  Google Scholar 

  18. Navalpakkam BK, Braun H, Kuwert T, Quick HH (2013) Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Invest Radiol 48(5):323–332

    Article  PubMed  Google Scholar 

  19. Berker Y, Kiessling F, Schulz V (2014) Scattered PET data for attenuation-map reconstruction in PET/MRI. Med Phys 41(10):102502

    Article  PubMed  Google Scholar 

  20. Dickson JC, O’Meara C, Barnes A (2014) A comparison of CT- and MR-based attenuation correction in neurological PET. Eur J Nucl Med Mol Imaging 41(6):1176–1189

    Article  PubMed  Google Scholar 

  21. Barbosa FG, von Schulthess G, Veit-Haibach P (2015) Workflow in simultaneous PET/MRI. Semin Nucl Med 45(4):332–344

    Article  Google Scholar 

  22. von Schulthess GK, Veit-Haibach P (2014) Workflow considerations in PET/MR imaging. J Nucl Med 55(Suppl 2):19S–24S

    Article  Google Scholar 

  23. Martinez-Möller A et al (2012) Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J Nucl Med 53(9):1415–1426

    Article  PubMed  Google Scholar 

  24. Leemans EL, Kotasidis F, Wissmeyer M, Garibotto V, Zaidi H (2015) Qualitative and quantitative evaluation of blob-based time-of-flight PET image reconstruction in hybrid brain PET/MR imaging. Mol Imaging Biol 17(5):704–713

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perani D et al (2016) Cross-validation of biomarkers for the early differential diagnosis and prognosis of dementia in a clinical setting. Eur J Nucl Med Mol Imaging 43(3):499–508

    Article  CAS  PubMed  Google Scholar 

  26. Vapnik V (2000) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  27. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  28. Focke NK et al (2011) Individual voxel‐based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum Brain Mapp 32(11):1905–1915

    Article  PubMed  Google Scholar 

  29. Klöppel S et al (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3):681–689

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fetit AE, Novak J, Peet AC, Arvanitits TN (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184

    Article  PubMed  Google Scholar 

  31. Pyka T et al (2015) Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 43(1):133–141

    Article  PubMed  Google Scholar 

  32. Hinrichs C, Singh V, Xu G, Johnson S (2009) MKL for robust multi-modality AD classification. Med Image Comput Comput Assist Interv 12(Pt 2):786–794

    PubMed  Google Scholar 

  33. Zhang D, Wang Y, Zhou L, Yuan H, Shen D, Alzheimer’s Disease Neuroimaging Initiative (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3):856–867

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dukart J et al (2011) Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One 6(3):e18111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hinrichs C, Singh V, Xu G, Johnson SC, Alzheimers Disease Neuroimaging Initiative (2011) Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55(2):574–589

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Castiglioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castiglioni, I., Gallivanone, F., Gilardi, M.C. (2016). Quantitation and Data Analysis in Hybrid PET/MRI Systems. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics