Skip to main content

Variational Theories of Two-Phase Continuum Poroelastic Mixtures: A Short Survey

  • Chapter
  • First Online:
Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

Abstract

A comprehensive survey is presented on two-phase and multi-phase continuum poroelasticity theories whose governing equations at a macroscopic level are based, to different extents, either on the application of classical variational principles or on variants of Hamilton’s least Action principle. As a focal discussion, the ‘closure problem’ is recalled, since it is widespread opinion in the multiphase poroelasticity community that even the simpler two-phase purely-mechanical problem of poroelasticity has to be regarded as a still-open problem of applied continuum mechanics. This contribution integrates a previous review by Bedford and Drumheller, and covers the period from the early use of variational concepts by Biot, together with the originary employment of porosity-enriched kinematics by Cowin and co-workers, up to variational theories of multiphase poroelasticity proposed in the most recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizicovici S, Aron M (1977) A variational theorem in the linear theory of mixtures of two elastic solids. The quasi-static case. Acta Mech 27(1):275–280

    Article  MathSciNet  MATH  Google Scholar 

  • Albers B, Wilmański K (2006) Influence of coupling through porosity changes on the propagation of acoustic waves in linear poroelastic materials. Arch Mech 58(4–5):313–325

    MathSciNet  MATH  Google Scholar 

  • Andreaus U, Giorgio I, Lekszycki T (2014) A 2-d continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift für Angewandte Mathematik und Mechanik 94(12):978–1000

    Article  MathSciNet  MATH  Google Scholar 

  • Ateshian GA, Ricken T (2010) Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol 9(6):689–702

    Article  Google Scholar 

  • Baveye PC (2013) Comment on “Averaging theory for description of environmental problems: What have we learned?” by William G. Gray, Cass T. Miller, and Bernhard A. Schrefler. Adv Water Resour 52:328–330

    Article  Google Scholar 

  • Bear J, Corapcioglu MY (2012) Fundamentals of transport phenomena in porous media, vol 82. Springer Science and Business Media, Berlin

    Google Scholar 

  • Bedford A, Drumheller D (1978) A variational theory of immiscible mixtures. Arch Ration Mech Anal 68(1):37–51

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford A, Drumheller D (1979) A variational theory of porous media. Int J Solids Struct 15(12):967–980

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford A, Drumheller DS (1983) Theories of immiscible and structured mixtures. Int J Eng Sci 21(8):863–960

    Article  MathSciNet  MATH  Google Scholar 

  • Berdichevsky V (2009) Variational principles of continuum mechanics. Springer, Berlin

    MATH  Google Scholar 

  • Biot M (1972) Theory of finite deformations of porous solids. Indiana Univ Math J 21(7):597–620

    Article  MathSciNet  MATH  Google Scholar 

  • Biot M (1977) Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int J Solids Struct 13(6):579–597

    Article  MathSciNet  MATH  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. i. low-frequency range. J Acoust Soc Am 28(2):168–178

    Article  MathSciNet  Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20(6):697–735

    Article  MATH  Google Scholar 

  • Cazzani A, Malagù M, Turco E (2014) Isogeometric analysis of plane-curved beams. Math Mech Solids. doi:10.1177/1081286514531265

    Google Scholar 

  • Cosserat E, Cosserat F (1909) Théorie des Corps Déformables (Theory of deformable structures). Hermann and Fils, Paris

    MATH  Google Scholar 

  • Coussy O, Dormieux L, Detournay E (1998) From mixture theory to Biot’s approach for porous media. Int J Solids Struct 35(34):4619–4635

    Article  MATH  Google Scholar 

  • Cowin S, Goodman M (1976) A variational principle for granular materials. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 56(7):281–286

    Article  MathSciNet  MATH  Google Scholar 

  • Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238

    Article  MathSciNet  Google Scholar 

  • Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188

    Article  MathSciNet  Google Scholar 

  • de Boer R (1996) Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl Mech Rev 49(4):201–262

    Google Scholar 

  • de Boer R (2005) Theoretical poroelasticity—a new approach. Chaos, Solitons Fractals 25(4):861–878

    Article  MATH  Google Scholar 

  • dell’Isola F, Placidi L (2012) Variational principles are a powerful tool also for formulating field theories. CISM Courses and Lectures, vol 535. Springer, Berlin

    Google Scholar 

  • dell’Isola F, Rosa L, Wozniak C (1998) A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech 127(1–4):165–182

    Google Scholar 

  • dell’Isola F, Sciarra G, Coussy O (2005a) A second gradient theory for deformable fluid-saturated porous media. In: Poromechanics III: Biot Centennial (1905-2005)—Proceedings of the 3rd Biot conference on poromechanics, pp 135–140

    Google Scholar 

  • dell’Isola F, Sciarra G, Romesh B (2005b) A second gradient model for deformable porous matrices filled with an inviscid fluid. Solid Mech Appl 125:221–229

    Google Scholar 

  • dell’Isola F, Madeo A, Seppecher P (2009) Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int J Solids Struct 46(17):3150–3164

    Article  MathSciNet  MATH  Google Scholar 

  • dell’Isola F, Steigmann D, Della Corte A (2015) Synthesis of complex structures. Designing micro-structure to deliver targeted macro-scale response. Appl Mech Rev. doi:10.1115/1.4032206

    Google Scholar 

  • Diebels S (1999) A micropolar theory of porous media: constitutive modelling. Transp Porous Media 34(1–3):193–208

    Article  Google Scholar 

  • Drumheller DS (1978) The theoretical treatment of a porous solid using a mixture theory. Int J Solids Struct 14(6):441–456

    Article  MATH  Google Scholar 

  • Duhem P (1893) Dissolutions et mélanges. 2ème mémoire, Les propriétés physiques des dissolutions. Au siège des Facultés (Lille)

    Google Scholar 

  • Eckart C (1960) Variation principles of hydrodynamics. Phys Fluids (1958-1988) 3(3):421–427

    Article  MathSciNet  MATH  Google Scholar 

  • Ehlers W, Bluhm J (2013) Porous media: theory, experiments and numerical applications. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  • Eringen AC (1968) Mechanics of micromorphic continua. Springer, Berlin

    Book  MATH  Google Scholar 

  • Eringen AC, Kafadar CB (1976) Polar field theories. Academic Press, Cambridge

    Google Scholar 

  • Fillunger P (1936) Erdbaumechanik?. Selbstverl. d. Verf., Wien

    Google Scholar 

  • Finlayson BA (2013) The method of weighted residuals and variational principles, vol 73. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Gajo A (2010) A general approach to isothermal hyperelastic modelling of saturated porous media at finite strains with compressible solid constituents. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, The Royal Society

    Google Scholar 

  • Giorgio I, Andreaus U, Madeo A (2014) The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Contin Mech Thermodyn 28(1–2):21–40

    MathSciNet  Google Scholar 

  • Goodman M, Cowin S (1972) A continuum theory for granular materials. Arch Ration Mech Anal 44(4):249–266

    Article  MathSciNet  MATH  Google Scholar 

  • Gray WG, Miller CT, Schrefler BA (2013a) Averaging theory for description of environmental problems: what have we learned? Adv Water Resour 51:123–138

    Google Scholar 

  • Gray WG, Miller CT, Schrefler BA (2013b) Response to comment on “averaging theory for description of environmental problems: what have we learned”. Adv Water Resour 51:331–333

    Google Scholar 

  • Greco L, Cuomo M (2014) An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput Methods Appl Mech Eng 269:173–197

    Article  MathSciNet  MATH  Google Scholar 

  • Greco L, Cuomo M (2016) An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput Methods Appl Mech Eng 298:325–349

    Article  MathSciNet  Google Scholar 

  • Gu W, Lai W, Mow V (1998) A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J Biomech Eng 120(2):169–180

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1990) Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resour 13(4):169–186

    Article  Google Scholar 

  • Herivel JW (1955) The derivation of the equations of motion of an ideal fluid by Hamilton’s principle. In: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press 51(02):344–349

    Google Scholar 

  • Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  • Huyghe JM, Janssen J (1997) Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35(8):793–802

    Article  MATH  Google Scholar 

  • Kenyon DE (1976) Thermostatics of solid-fluid mixtures. Arch Ration Mech Anal 62(2):117–129

    MathSciNet  MATH  Google Scholar 

  • Lai W, Hou J, Mow V (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113(3):245–258

    Article  Google Scholar 

  • Lanczos C (1970) The variational principles of mechanics, vol 4. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  • Landau L, Lifshitz E (1976) Mechanics: vol 1 (Course of theoretical physics). Butterworth-Heinemann, Oxford

    Google Scholar 

  • Leech C (1977) Hamilton’s principle applied to fluid mechanics. Q J Mech Appl Math 30(1):107–130

    Article  MathSciNet  MATH  Google Scholar 

  • Lopatnikov S, Cheng A (2002) Variational formulation of fluid infiltrated porous material in thermal and mechanical equilibrium. Mech Mater 34(11):685–704

    Article  Google Scholar 

  • Lopatnikov S, Cheng A (2004) Macroscopic Lagrangian formulation of poroelasticity with porosity dynamics. J Mech Phys Solids 52(12):2801–2839

    Article  MathSciNet  MATH  Google Scholar 

  • Lopatnikov S, Gillespie J (2010) Poroelasticity-I: governing equations of the mechanics of fluid-saturated porous materials. Transp Porous Media 84(2):471–492

    Article  MathSciNet  Google Scholar 

  • Lopatnikov S, Gillespie J (2011) Poroelasticity-II: on the equilibrium state of the fluid-filled penetrable poroelastic body. Transp Porous Media 89(3):475–486

    Article  MathSciNet  Google Scholar 

  • Lopatnikov S, Gillespie J (2012) Poroelasticity-III: conditions on the interfaces. Transp Porous Media 93(3):597–607

    Article  MathSciNet  Google Scholar 

  • Madeo A, Lekszycki T, dell’Isola F (2011) A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus - Mecanique 339(10):625–640

    Article  Google Scholar 

  • Madeo A, dell’Isola F, Darve F (2013) A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J Mech Phys Solids 61(11):2196–2211

    Article  MathSciNet  Google Scholar 

  • Mindlin R (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Moiseiwitsch BL (2013) Variational principles. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  • Mow V, Kuei S, Lai W, Armstrong C (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102(1):73–84

    Article  Google Scholar 

  • Nikolaevskiy V (2005) Biot-Frenkel poromechanics in Russia (review). J Eng Mech 131(9):888–897

    Article  Google Scholar 

  • Nunziato JW, Walsh EK (1980) On ideal multiphase mixtures with chemical reactions and diffusion. Arch Ration Mech Anal 73(4):285–311

    Article  MathSciNet  MATH  Google Scholar 

  • Nur A, Byerlee J (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76(26):6414–6419

    Article  Google Scholar 

  • Oden JT, Reddy JN (2012) Variational methods in theoretical mechanics. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  • Passman S (1977) Mixtures of granular materials. Int J Eng Sci 15(2):117–129

    Article  MATH  Google Scholar 

  • Schrefler B (2002) Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl Mech Revi 55(4):351–388

    Article  Google Scholar 

  • Sciarra G, dell’Isola F, Hutter K (2005) Dilatancy and compaction around a cylindrical cavern leached-out in a fluid saturated salt rock. In: Poromechanics III: Biot Centennial (1905-2005) - Proceedings of the 3rd Biot Conference on Poromechanics, pp 681–687

    Google Scholar 

  • Sciarra G, dell’Isola F, Coussy O (2007) Second gradient poromechanics. Int J Solids Struct 44(20):6607–6629

    Article  MathSciNet  MATH  Google Scholar 

  • Serpieri R (2011) A rational procedure for the experimental evaluation of the elastic coefficients in a linearized formulation of biphasic media with compressible constituents. Transp Porous Media 90(2):479–508

    Article  MathSciNet  Google Scholar 

  • Serpieri R, Rosati L (2011) Formulation of a finite deformation model for the dynamic response of open cell biphasic media. J Mech Phys Solids 59(4):841–862

    Article  MathSciNet  MATH  Google Scholar 

  • Serpieri R, Travascio F (2015) General quantitative analysis of stress partitioning and boundary conditions in undrained biphasic porous media via a purely macroscopic and purely variational approach. Contin Mech Thermodyn 28(1–2):235–261

    MathSciNet  Google Scholar 

  • Serpieri R, Travascio F, Asfour S (2013) Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. In: Computational methods for coupled problems in Science and Engineering V -A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS, pp 1142–1153

    Google Scholar 

  • Serpieri R, Travascio F, Asfour S, Rosati L (2015) Variationally consistent derivation of the stress partitioning law in saturated porous media. Int J Solids Struct 56–57:235–247

    Article  Google Scholar 

  • Skempton A (1954) The pore-pressure coefficients a and b. Geotechnique 4(4):143–147

    Article  Google Scholar 

  • Svendsen B, Hutter K (1995) On the thermodynamics of a mixture of isotropic materials with constraints. Int J Eng Sci 33(14):2021–2054

    Article  MathSciNet  MATH  Google Scholar 

  • Terzaghi K (1936) The shearing resistance of saturated soils and the angle between the planes of shear. In: Proceedings of the international conference on soil mechanics and foundation engineering, Cambridge (MA), USA

    Google Scholar 

  • Travascio F, Serpieri R, Asfour S (2013) Articular cartilage biomechanics modeled via an intrinsically compressible biphasic model: implications and deviations from an incompressible biphasic approach. In: Proceedings of the ASME 2013 summer bioengineering conference, American Society of Mechanical Engineers, pp V01BT55A004–V01BT55A004

    Google Scholar 

  • Travascio F, Eltoukhy M, Cami S, Asfour S (2014) Altered mechano-chemical environment in hip articular cartilage: effect of obesity. Biomech Model Mechanobiol 13(5):945–959

    Article  Google Scholar 

  • Travascio F, Asfour S, Serpieri R, Rosati L (2015) Analysis of the consolidation problem of compressible porous media by a macroscopic variational continuum approach. Math Mech Solids. doi:10.1177/1081286515616049

    Google Scholar 

  • Truesdell C (1969) Rational thermodynamics: a course of lectures on selected topics. McGraw-Hill, New York

    Google Scholar 

  • Truesdell C, Toupin R (1960) The classical field theories. Springer, Berlin

    Google Scholar 

  • Wilmański K (1998) A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp Porous Media 32(1):21–47

    Article  Google Scholar 

  • Wilmański K (2006) A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn Earthq Eng 26(6):509–536

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Serpieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serpieri, R., Della Corte, A., Travascio, F., Rosati, L. (2016). Variational Theories of Two-Phase Continuum Poroelastic Mixtures: A Short Survey. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics