Skip to main content

A Unified View of Trend-Cycle Predictors in Reproducing Kernel Hilbert Spaces (RKHS)

  • Chapter
  • First Online:
Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation

Part of the book series: Statistics for Social and Behavioral Sciences ((SSBS))

  • 1807 Accesses

Abstract

A common approach for trend-cycle estimation is to use nonparametric smoothing estimators which can be finite or infinite in length. The main methods presented in this chapter are based on different criteria of fitting and smoothing, namely: (1) density functions, (2) local polynomial fitting, (3) graduation theory, and (4) smoothing spline regression. A unified approach for all of these different trend-cycle nonparametric estimators is provided by means of the Reproducing Kernel Hilbert Space (RKHS) methodology. It is shown how nonparametric estimators can be transformed into kernel functions of order two, that are probability densities, and from which corresponding higher order kernels are derived. This kernel representation enables the comparison of estimators based on different smoothing criteria, and has important consequences in the derivation of the asymmetric filters which are applied to the most recent seasonally adjusted data for real time trend-cycle estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aronszajn, N. (1950). Theory of reproducing kernels. Transaction of the AMS, 68, 337–404.

    Article  MathSciNet  MATH  Google Scholar 

  2. Berlinet, A. (1993). Hierarchies of higher order kernels. Probability Theory and Related Fields, 94, 489–504.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berlinet, A., & Thomas-Agnan, C. (2003). Reproducing kernel Hilbert spaces in probability and statistics. Boston, MA: Kluwer Academic Publishers.

    MATH  Google Scholar 

  4. Bianconcini, S. (2006). Trend-Cycle Estimation in Reproducing Kernel Hilbert Spaces (Ph.D. thesis, Department of Statistics, University of Bologna).

    Google Scholar 

  5. Cleveland, W. S. (1979). Robust locally regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–836.

    Article  MathSciNet  MATH  Google Scholar 

  6. Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions. Numerical Mathematics, 31, 377–403.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  8. Dagum, E. B. (1996). A new method to reduce unwanted ripples and revisions in trend-cycle estimates from X11ARIMA. Survey Methodology, 22(1), 77–83.

    Google Scholar 

  9. Dagum, E. B., & Bianconcini, S. (2006). Local polynomial trend-cycle predictors in reproducing kernel Hilbert spaces for current economic analysis. Anales de Economia Aplicada, 1–22.

    Google Scholar 

  10. Dagum, E. B., & Bianconcini, S. (2008). The Henderson smoother in reproducing kernel Hilbert space. Journal of Business and Economic Statistics, 26(4), 536–545.

    Article  MathSciNet  Google Scholar 

  11. Dagum, E. B., & Bianconcini, S. (2013). A unified probabilistic view of nonparametric predictors via reproducing kernel Hilbert spaces. Econometric Reviews, 32(7), 848–867.

    Article  MathSciNet  Google Scholar 

  12. De Boor, C., & Lynch, R. (1966). On splines and their minimum properties. Journal of Mathematics and Mechanics, 15, 953–969.

    MathSciNet  MATH  Google Scholar 

  13. Doherty, M. (1992). The Surrogate Henderson Filters in X-11. Working Paper. Wellington, New Zealand: Statistics New Zealand.

    Google Scholar 

  14. Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Advanced in Computational Mathematics, 13, 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  15. George, E. O., El-Saidi, M., & Singh, K. (1986). A generalized logistic approximation of the Student t distribution. Communications in Statistics B - Simulation Computing, 15(1), 261–277.

    MathSciNet  MATH  Google Scholar 

  16. George, E. O., & Ojo, M. O. (1980). On a generalization of the logistic distribution. Annals of the Institute of Statistical Mathematics, 32, 161–169.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gray, A., & Thomson, P. (1996). On a family of moving-average trend filters for the ends of series. In Proceedings of the Business and Economic Statistics Section. American Statistical Association Annual Meeting, Chicago.

    Google Scholar 

  18. Green, P. J., & Silverman, B. W. (1994). Nonparametric regression and generalized linear models. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  19. Henderson, R. (1916). Note on graduation by adjusted average. Transactions of the Actuarial Society of America, 17, 43–48.

    Google Scholar 

  20. Jones, M. C. (2006). The logistic and the log F distributions. In N. Balakrishan (Ed.), Handbook of logistic distribution. New York: Dekker.

    Google Scholar 

  21. Kimeldorf, G. S., & Wahba, G. (1970). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41, 495–502.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kimeldorf, G. S., & Wahba, G. (1970). Splines functions and stochastic processes. Sankhya, Series A, 32, 173–180.

    MathSciNet  MATH  Google Scholar 

  23. Lin, G. D., & Hu, C. Y. (2008). On the characterization of the logistic distribution. Journal of Statistical Planning and Inference, 138(4), 1147–1156.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mudholkar, G. S., & George, E. O. (1978). A remark on the shape of the logistic distribution. Biometrika, 65, 667–668.

    Article  MATH  Google Scholar 

  25. Musgrave, J. (1964). A Set of End Weights to End All End Weights. Working paper. Washington: US Bureau of the Census.

    Google Scholar 

  26. Parzen, E. (1959). Statistical Inference on Time Series by Hilbert Space Methods. Technical Report No. 53., Stanford, CA: Statistics Department, Stanford University.

    Google Scholar 

  27. Pearce, N. D., & Wand, M. P. (2006). Penalized splines and reproducing kernel methods. The American Statistician, 60(3), 223–240.

    Article  MathSciNet  Google Scholar 

  28. Prentice, R. L. (1976). A generalization of probit and logit methods for dose response curves. Biometrics, 32, 761–768.

    Article  Google Scholar 

  29. Priestley, M. B. (1981). Spectral analysis and time series. Probability and mathematical statistics. New York: Academic.

    Google Scholar 

  30. Schoenberg, I. (1964). Monosplines and quadrature formulae. In T. Greville (Ed.), Theory and applications of spline functions. Madison, WI: University of Wisconsin Press.

    Google Scholar 

  31. Silverman, B. (1994). Spline smoothing: The equivalent kernel method. Annals of Statistics, 12, 898–916.

    Article  MathSciNet  MATH  Google Scholar 

  32. Thomas-Agnan, C. (1991). Splines functions and stochastic filtering. Annals of Statistics, 9(3), 1512–1527.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wahba, G. (1990). Spline models for observational data. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  34. Wahba, G. (1999). Support vector machine, reproducing kernel Hilbert spaces, and randomized GACV. In B. Scholkopf, C. Burges, & A. Smola (Eds.), Advanced in kernel methods: Support vector learning (pp. 69–88). Cambridge, MA: MIT Press.

    Google Scholar 

  35. Whittaker, E. T. (1923). On a new method of graduation. In Proceedings of the Edinburgh Mathematical Association (Vol. 78, pp. 81–89).

    Google Scholar 

  36. Whittaker, E. T., & Robinson, G. (1924). Calculus of observations: A treasure on numerical calculations. London: Blackie and Son.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bee Dagum, E., Bianconcini, S. (2016). A Unified View of Trend-Cycle Predictors in Reproducing Kernel Hilbert Spaces (RKHS). In: Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation. Statistics for Social and Behavioral Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-31822-6_9

Download citation

Publish with us

Policies and ethics