Skip to main content

Explicit Blow-Up Time for Two Porous Medium Problems with Different Reaction Terms

  • Chapter
  • First Online:
Trends in Differential Equations and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 8))

Abstract

This paper deals with the blow-up phenomena of classical solutions to porous medium problems, defined in a bounded domain of \(\mathbb{R}^{n}\), with n ≥ 1. We distinguish two situations: in the first case, no gradient nonlinearity is present in the reaction term contrarily to the other case. Specifically, some theoretical and general results concerning the mathematical model, existence analysis and estimates of the blow-up time t of unbounded solutions to these problems are summarized and discussed. More exactly, for both problems, explicit lower bounds of t if blow-up occurs are derived in the case n = 3 and in terms of an auxiliary function. On the other hand, in order to compute the real blow-up times of such blowing-up solutions and discuss their properties, a general resolution method is proposed and used in some two-dimensional examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, G., Durán, R.G.: An optimal Poincaré inequality in L 1 for convex domains. Proc. Am. Math. Soc. 132, 195–202 (2004)

    Article  MATH  Google Scholar 

  2. Aronson, D.G., Crandall, M.G, Peletier, L.A.: Stabilization of solutions of a degenerate diffusion problem. Nonlinear Anal. Theor. 6, 1001–1022 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandle, C., Brunner, H.: Blow-up in diffusion equations: a survey. J. Comput. Appl. Math. 97, 3–22 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barenblatt, G.I.: On some unsteady motions of a liquid or a gas in a porous medium. Appl. Math. Mech. 16 (1), 67–78 (1952)

    MathSciNet  Google Scholar 

  5. Brändle, C., Quirós, F., Rossi, J.D.: Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Comm. Pure Appl. Anal. 4, 523–536 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farina, M.A., Marras, M., Viglialoro, G.: On explicit lower bounds and blow-up times in a model of chemotaxis. Discret. Contin. Dyn. Syst. Suppl. 2015, 409–417 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Galaktionov, V.A., Vázquez, J.L.: The problem of blow up in nonlinear parabolic equations. Discret. Contin. Dyn. Syst. 8, 399–433 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuda, K.: FreeFem++ (Third Edition, Version 3.19). Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris. http://www.freefem.org/ff++/

  9. Larsson, S., Thomee, V.: Partial Differential Equations with Numerical Methods. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  10. Leibenzon, L.S.: The motion of a gas in a porous medium. Complete Works, vol. 2, Acad. Sci. URSS, Moscow (1953) (in Russian)

    Google Scholar 

  11. Levine, H.A.: Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients. Math. Ann. 329 (2), 205–220 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marras, M., Vernier-Piro, S., Viglialoro, G.: Estimate from below of blow-up time in a parabolic system with gradient term. Int. J. Pure Appl. Math. 93 (2), 297–306 (2014)

    Article  MATH  Google Scholar 

  13. Marras, M., Vernier-Piro, S., Viglialoro, G.: Lower bounds for blow-up time in a parabolic problem with a gradient term under various boundary conditions. Kodai Math. J. 3, 532–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marras, M., Vernier Piro, S., Viglialoro, G.: Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Discret. Contin. Dyn. Syst. Suppl. 2015, 809–916 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Marras, M., Vernier Piro, S., Viglialoro, G.: Blow-up phenomena in chemotaxis systems with a source term. Math. Method Appl. Sci. (2015). doi:http://dx.doi.org/10.1002/mma.3728

    Google Scholar 

  16. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Medium. McGraw-Hill, New York (1937)

    MATH  Google Scholar 

  17. Pattle, R.E.: Diffusion from an instantaneous point source with a concentration-dependent coefficient. Q. J. Mech. Appl. Math. 12 (4), 407–409 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Payne, L.E., Schaefer, P.W.: Lower bound for blow-up time in parabolic problems under Neumann conditions. Appl. Anal. 85, 1301–1311 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Payne, L.E., Philippin, G.A., Schaefer, P.W.: Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Anal. Theor. 69 (10), 3495–3502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Quittner, R., Souplet, P.: Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States. Birkhäuser Advanced Texts. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  21. Sacks, P.E.: The initial and boundary value problem for a class of degenerate parabolic equations. Commun. Partial Differ. Equ. 8 (7), 693–733 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schaefer, P.W.: Lower bounds for blow-up time in some porous medium problems. Proc. Dyn. Syst. Appl. 5, 442–445 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Souplet, P.: Recent results and open problems on parabolic equations with gradient nonlinearities. Electron. J. Differ. Equ. 2001, 1–19 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Stinner, Ch., Winkler, M.: Finite time vs. infinite time gradient blow-up in a degenerate diffusion equation. Indiana Univ. Math. J. 57 (5), 2321–2354 (2008)

    Google Scholar 

  25. Straughan, B.: Explosive Instabilities in Mechanics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  26. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. Clarendon Press, Oxford (2006)

    Book  Google Scholar 

  28. Viglialoro, G.: On the blow-up time of a parabolic system with damping terms. C. R. Acad. Bulg. Sci. 67 (9), 1223–1232 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Viglialoro, G.: Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions. Differ. Integral Equ. 29 (3–4), 359–376 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The author also gratefully acknowledges Sardinia Regional Government for the financial support (P.O.R. Sardegna, F.S.E. 2007–2013). This work is also supported by the research group IFQM315-Análisis Teórico y Numérico de Modelos de las Ciencias Experimentales, of the Department of Mathematics of the University of Cadiz (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Viglialoro .

Editor information

Editors and Affiliations

Appendix

Appendix

For completeness of the reader, we emphasize some details used in the proof of Theorem 3.

Proposition 1

Let the coefficients ci (i = 1,…,6) of Theorem 3 satisfy

$$\displaystyle{ c_{3} \geq c_{5}\Big(\frac{c_{5}} {c_{6}}\Big)^{ \frac{-3\delta } {2(m+d)} }\Big( \frac{3\delta } {(2m + 2d - 3\delta )}\Big)^{- \frac{3\delta } {2(m+d)} } \frac{2(m + d)} {2(m + d) - 3\delta }. }$$
(32)

Then there exits at least a ξ ∈ (0,∞) such that

$$\displaystyle{ c_{5}\xi + c_{6}\xi ^{1-\frac{2(m+d)} {3\delta } } - c_{3} \leq 0. }$$
(33)

Proof

For any ξ ∈ (0, ), function \(\varPhi (\xi ):= c_{5}\xi + c_{6}\xi ^{1-\frac{2(m+d)} {3\delta } }\) attains its minimum at the point

$$\displaystyle{\xi _{m} =\Big ( \frac{3\delta c_{5}} {c_{6}(2m + 2d - 3\delta )}\Big)^{ \frac{-3\delta } {2(m+d)} }.}$$

Therefore, since

$$\displaystyle{\varPhi (\xi _{m}) = c_{5}\Big(\frac{c_{5}} {c_{6}}\Big)^{ \frac{-3\delta } {2(m+d)} }\Big( \frac{3\delta } {(2m + 2d - 3\delta )}\Big)^{- \frac{3\delta } {2(m+d)} } \frac{2(m + d)} {2(m + d) - 3\delta },}$$

and (32) holds, relation (33) is proven.

In addiction, let us give this

Remark 6

Relation (32) can be explicitly written as

$$\displaystyle{ \frac{1} {k_{1}}\Big(\frac{k_{2}} {k_{1}}\Big)^{\frac{\gamma -1} {1-\mu }} \geq \frac{\varGamma ^{ \frac{3\delta } {m+d} }s^{2}(m + d)^{2}} {4m(ms - 1)} \Big[ \frac{\gamma -\mu } {\gamma -1}\Big( \frac{2\sqrt{\lambda _{1}}} {ms + q - 1}\Big)^{q}\Big]^{-\frac{\gamma -1} {1-\mu }}\Sigma, }$$

being

$$\displaystyle{ \Sigma = \frac{1-\mu } {\gamma -\mu }\Big( \frac{6(m + d)\varGamma ^{ \frac{6\alpha } {2m+3d} }d\alpha \sigma } {(2m + 3d)(2m + 2d - 3\delta )}\Big)^{1- \frac{3\delta } {2(m+d)} }. }$$

Therefore, once m, p, q and Ω are fixed in (P 2), relation (32) is satisfied for k 2 (respectively, k 1) big (respectively, small) enough. Since k 2 is the coefficient associated to − | ∇u | q, which contrasts the explosion, and k 1 the one associated to u p, which stimulates it, this effect of coefficients k 1 and k 2 is coherent in terms of estimate (8). In fact, t increases when constants c 7 and c 8 decreasing, which in turn decrease with k 2 (respectively k 1) increasing (respectively, decreasing).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Viglialoro, G. (2016). Explicit Blow-Up Time for Two Porous Medium Problems with Different Reaction Terms. In: Ortegón Gallego, F., Redondo Neble, M., Rodríguez Galván, J. (eds) Trends in Differential Equations and Applications. SEMA SIMAI Springer Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-32013-7_9

Download citation

Publish with us

Policies and ethics