Skip to main content

About Traditional and New Wood Species for String Instruments

  • Chapter
  • First Online:
Handbook of Materials for String Musical Instruments

Abstract

Traditional wood species used for violins and other instruments of this family are spruce resonance wood, also called Norway spruce, or spruce tonewood known under the scientific name of Picea abies that are used for the top, and curly maple (Acer pseudoplatanus) for the belly, ribs and neck. Macroscopically, resonance spruce for violins has a very regular structure without any defect (knots, resin pockets, stain). The width of the annual rings should have a low proportion of latewood. The raw wooden material for violins and other instruments, also called wedges should be naturally air dried for a long period of time (10 years). Resonance wood is very anisotropic. Other species, such as Sitka spruce, white spruce or red cedar are used for high quality instruments such as pianos, harps or guitars. Curly maple is characterised by flamed figures. Because of relative scarcity of these species there is a need to find replacement wood species with similar acoustical behaviour. Some Australian native species,such as King William pine and Huon pine were identified as substitutes for spruce. Blackwood, myrtle and sassafras as substitutes for curly maple. These new species should satisfy the acoustical requirements and aesthetical exigencies of luthiers and musicians. The tonal balance on violins made from Australian species is different from that obtained with European species because the high frequency damping is different. Building guitars with Australian species has been very successful and acoustical and aesthetical exigencies have been perfectly satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RR, Shepperd WD (1990) Picea engelmannii Parry ex Engelm. Silvics N Am 1(1990):187–203

    Google Scholar 

  • Aramaki M, Bailleres H, Brancheriau L, Kronland-Martinet R, Ystad S (2007) Sound quality assessment of wood for xylophone bars. J Acoust Soc Am 121(4):2407–2421

    Article  Google Scholar 

  • Arbogast M (1992) L’érable a fibres ondulées et la lutherie. Revue Forestière Française XLIV, no special 176–186

    Google Scholar 

  • Baese G (2001) The optical properties of wood. J. Violin Soc Am 17(3):57–72

    Google Scholar 

  • Barducci I, Pasqualini G (1948) Misura dell’attrito interno e delle costanti elastiche del legno. Il Nuovo Cimento 5(5):416–446

    Article  Google Scholar 

  • Barlow CY (1997) Materials selection for musical instruments. Proc Inst Acoust UK 19:69–78

    Google Scholar 

  • Barlow CY, Woodhouse J (1992) Micromechanics of permanent deformation in softwood. In: Proceedings of 13th RISO International Symposium on Material Science Modelling of plastic deformation and its engineering applications. Roskilde, Denmark

    Google Scholar 

  • Bolza E, Kloot NH (1963) The mechanical properties of 174 Australian timbers. CSIRO Australia. Div Forest Prod Techn, paper no 25

    Google Scholar 

  • Bonamini G (2002) Research on resonance wood in Paneveggio. (La riceraca sul legno di risonanza di Paneveggio). In: Atti del Convegno—Pred azzo—Legno di risonanza della Foresta di Paneveggio, technologia, impiego, valorizzazione. La grafica S.R.L. Mori, Trento, pp. 49–82

    Google Scholar 

  • Bonamini G, Chiesa V, Uzielli L (1991) Anatomical features and anisotropy in spruce wood with indented rings. Catgut Acoust Soc J, Series II 8:12–16

    Google Scholar 

  • Bootle KR (1996) Wood in Australia. Types, properties and uses. McGraw-Hill Book Companies, Sydney

    Google Scholar 

  • Bourgois J, Janin G, Guyonnet R (1991) La mesure de couleur: Une méthode d’étude et d’optimisation des transformations chimiques du bois thermolysé. Holzforschung 45(5):377–382

    Article  Google Scholar 

  • Bradbury GJ (2010) Environmental &genetic variation in blackwood (Acacia melanoxylon R.Br.) survival, growth, form & wood properties. Ph.D University of Tasmania, Australia

    Google Scholar 

  • Bradbury GJ, Potts BM, Beadle CL (2011a) Genetic and environmental variation in wood properties of Acacia melanoxylon. Annals of forest science 68(8):1363–1373

    Article  Google Scholar 

  • Bradbury GJ, Potts BM, Beadle CL et al (2011b) Genetic and environmental variation in heartwood colour of Australian blackwood (Acacia melanoxylon R. Br). Holzforschung 65:349–359

    Article  Google Scholar 

  • Bragg DC (2007) Potential contributions of figured wood to the practice of sustainable forestry. J. Sustainable Forestry 23(3):67–81

    Article  Google Scholar 

  • Brémaud I (2012) What do we know on “resonance wood” properties ? Selective review and ongoing research. In: Acoustics 2012 proceedings of nantes conference, France

    Google Scholar 

  • Bucur V (1983) About the objective characterisation of timber for violin (Vers une appréciation objective des propriétés des bois du violon). Revue forestière française xxxv(2):130–137

    Article  Google Scholar 

  • Bucur V (1984) Ondes ultrasonores dans le bois. Caractérisation mécanique et qualité de certaines essences de bois. Ph D thesis. Institut Supérieur de Matériaux, St Ouen, Paris

    Google Scholar 

  • Bucur V (1987) Varieties of resonance wood and their elastic constants. Catgut Acoust. Soc. Newsletter 47, May: 42–48, reproduced in Hutchins CM and Benade V (1997) Research papers in violin acoustics, 1975–1993: with an introductory essay, 350 years of violin research. Acoustical Society of America, pp. 787–794

    Google Scholar 

  • Bucur V (1991) unpublished data

    Google Scholar 

  • Bucur V (1992a) Anatomical structure of curly maple (La structure anatomique du bois d’érable ondée). Revue Forestière Française 44(no spécial):3–8

    Google Scholar 

  • Bucur V (1992b) Wood for violin making (Le bois de lutherie). J. de Physique IV, Colloque C1, Suppl. J. de Physique III, 2:C 1-59–C1-65

    Google Scholar 

  • Bucur V (1995) Acoustics of wood, 1st edn. CRC Publ, Boca Raton

    Google Scholar 

  • Bucur V (2001) Inorganic inclusions in cell wall of wood for violins. In: Proceedings of international symposium musical acoustics—ISMA 2001. Perugia, Italy, pp. 565–568

    Google Scholar 

  • Bucur V (2002) Acoustical and elastical properties of resonance spruce related to wood structure. In Italian. (Le proprieta acustiche ed elastiche del legno di Picea di risonanza in raporto con la sua struttura). In: Atti del Convegno—Pred azzo—Legno di risonanza della Foresta di Paneveggio, technologia, impiego, valorizzazione. La grafica S.R.L. Mori, Trento, pp. 83–90

    Google Scholar 

  • Bucur V (2006) Acoustics of wood, 2nd edn. Springer-Verlag

    Google Scholar 

  • Bucur V, Chivers RC (1991) Acoustic properties and anisotropy of some Australian wood species. Acta Acustica united with Acustica 75(1):69–74

    Google Scholar 

  • Bucur V, Clément A, Bitsch M, Houssement C (1999) Acoustic properties of resonance wood and distribution of inorganic components of the cell wall. Eur J Wood and Wood Products, Previously Holz als Roh—und Werkstoff 57(2):103–104

    Article  Google Scholar 

  • Bucur V, Clément A, Thomas D (2000) Relationship between the inorganic components of cell wall and the acoustic properties of wood for violins. Catgut Acoust Soc J Series II 4(2):39–47

    Google Scholar 

  • Buksnowitz C (2006) Resonance wood of Picea abies. Ph D Thesis, Institute of wood science and technology, University of Vienna—BOKU

    Google Scholar 

  • Buksnowitz C, Teischinger A, Müller U, Pahler A, Evans R (2007) Resonance wood [Picea abies (L.) Karst.] Evaluation and prediction of violin makers’ quality-grading. J Acoust Soc Am 121(4):2384–2395

    Article  Google Scholar 

  • Buksnowitz C, Evans R, Müller U, Teischinger A (2012) Indented rings (hazel growth) of Norway spruce reduce anisotropy of mechanical properties. Wood Sci. Techn. 46(6):1239–1246

    Article  Google Scholar 

  • Buksnowitz C, Teischinger A, Grabner M, Müller U, Mahn L (2010) Tracheid length in Norway spruce (Picea abies (L.) Karst.) analysis of three databases regarding tree age, cambial age, tree height, inter-annual variation, radial distance to pith and log qualities. Wood Res 55(4):1–14

    Google Scholar 

  • Caicedo-Llano N (2014) A methodology to select a group of species among 131 tropical (Colombian) species for bowed timber applications. Maderas Cienc Tecnol 16(2):245–264

    Google Scholar 

  • Caldersmith G (1995) Designing a guitar family. Appl Acoust 46:3–17

    Article  Google Scholar 

  • ChiesaV (1988) The influence of the intensity of rings indentation on elastical parameters of hazel spruce resonance wood. (Influenza dell’intensita delle introflessioni sui parametri elastici del legno di Abete rosso “di risonanza) (in Italian). Tesi di laurea in Scienze Forestali, Universita di Firenze

    Google Scholar 

  • Corona E (1990) Abnormality on annual rings of resonance spruce (Anomalie anulari nell’abete rosso di risonanza). L’Italia Forestale e Montana. 45:393–397

    Google Scholar 

  • Cox TM (1996) A note on tonewood selection. Catgut Acoust Soc J Series II 3(2):45–46

    Google Scholar 

  • Delune L (1977) Wood in the industry of music (Le bois dans l’industrie de la musique) Revue Forestière Française XXIX, 2:143–149

    Google Scholar 

  • Dipper A (2013) Librem segreti de buttegha—a book of workshop sectets. The violin and its fabrication in Italy, circa 1725–1790. Dipper Press, Minneapolis

    Google Scholar 

  • Dunlop JI (1989) The acoustic properties of wood in relation to stringed musical instruments. Acoust Aust 17:37–40

    Google Scholar 

  • Evans P (2007) The use of Blackwood in the Australian guitar making industry. In: Beadle CL, Brown AG (eds) Acacia utilisation and management: adding value—proceedings of 3rd blackwood industry group (BIG) workshop, Marysville, Vic, 26–29 April 2006, RIRDC Publ. No 07/095, Canberra, Australia, pp. 45–46

    Google Scholar 

  • Fletcher NH (2000) A history of musical acoustics research in Australia. Acoustics Australia 28(3):97–101

    Google Scholar 

  • Florinnet AG (2009) Tonewood Switzerland. Bergün. www.tonewood.ch. Accessed 15 Aug 2009

  • Foster CG (1992) Damping and poisson factor behaviour in timber considered as an orthotropic material. Part 1: the loss factor. J Sound Vibr 158(3):405–425; Part 2: the Poisson factor. J Sound Vibr 158(3):427–445

    Google Scholar 

  • Fouilhé E, Houssay A, Brémaud I (2012) Dense and hard woods in musical instrument making: comparison of mechanical properties and perceptual “quality” grading. In: Proceedings of Acoustics 2012, Nantes, France. http://hal.archives-ouvertes.fr/docs/00/80/83/68/PDF/Dense_hard_wood_musical_Fouilhe_al.pdf. Accessed 27 June 2014

  • Fukazawa K, Ohtani J (1984) Indented rings in Sitka spruce. In: Proceedings of pacific regional wood anatomy conference: Oct 1–7, 1984, Tsukuba, Ibaraki, Japan/editor, Syoji Sudo, convener; organized by the Int Assoc of Wood Anatomists and S5. 01 of the Int Union of For Res Organ. 1984

    Google Scholar 

  • Ghelmeziu N, Beldie IP (1972) On the characteristics of resonance spruce wood. Catgut Acoust Soc Newsl 17:10–16

    Google Scholar 

  • Giordano G (1971) Wood technology (Tecnologia del legno), vol I, UTET, Torino, Italy (in Italian)

    Google Scholar 

  • Goldsmith V, Grossmann PVA (1967) The effect of frequency of vibration on the viscoelastic properties of wood. J Institute Wood Sci 18:44–53

    Google Scholar 

  • Gore T (2011) Wood for guitars. Proc Meetings Acoust Acoustical Soc Am 12:035001, 10 pp. http://acousticalsociety.org/

  • Gough CE (2011) The violin bow: taper, camber and flexibility. J Acoust Soc Am 130(6):4105–4116

    Article  Google Scholar 

  • Greenhill WL (1941) A preliminary investigation of the comparative damping capacities of various timbers—particularly those of interest in air-craft construction. CSIRO Div Forest Products. Progress Report no 1

    Google Scholar 

  • Greenhill WL (1942) The damping capacity of timber. CSIRO Journal 15:146–153

    Google Scholar 

  • Greenhill WL, Fraser JD (1942) the damping capacity of various timbers as measured by a torsional damping machine. CSIRO, Div Forest Products, Progress Report no 2

    Google Scholar 

  • Haines D (1979) On musical instrument wood. Catgut Acoust Soc Newsl 23–32

    Google Scholar 

  • Haines D (2000) The essential mechanical properties of wood prepared for musical instruments. Catgut Acoust Soc J Series II 4(2):20–32

    Google Scholar 

  • Harris AS (1984) Sitka Spruce (Picea sitchensis (Bong.) Carr.) US Forest Service. Report F-265. http://www.fpl.fs.fed.us/documnts/usda/amwood/265sitka.pdf

  • Hearmon RFS (1948) The elasticity of wood and plywood. HM Stationery Office, London

    Google Scholar 

  • Helmholtz H von (1866) Physiological optics—the sensations of vision, translated in Sources of Colour Science. In: MacAdam DL (ed). MIT Press, Cambridge 1970

    Google Scholar 

  • Holz D (1966) Untersuchungen an Resonanzholz. Part I Arch Forstwes 15:1287–1300

    Google Scholar 

  • Holz D (1973) Untersuchungen an Resonanzholz. Part V Holztechnologie 14(4):195–202

    Google Scholar 

  • Holz D (1984) On some relations between anatomic properties and acoustical qualities of resonance wood. Holztechnologie 25(1):31–36

    Google Scholar 

  • Janin G (1994) Colorimetrie: principe de mesure de la couleur. Application au bois. Chapitre 10 « Le bois matériau d’ingénierie » Ed Ph. Jodin ARBOLOR Nancy, pp. 379–399

    Google Scholar 

  • Janin G, Goncalez J, Ananías R, Charrier B, Fernandes da Silva G, Dilem A (2001) Aesthetics appreciation of wood colour and patterns by colorimetry. Part 1. Colorimetry theory for the CIE Lab system. Maderas. Ciencia y Tecnología. 3(1–2):3–13

    Google Scholar 

  • Kahle E, Woodhouse J (1994) The influence of cell geometry on the elasticity of softwood. J Mat. Sci. 29:1250–1259

    Article  Google Scholar 

  • Katz JL, Meunier A (1990) A generalized method for characterizing elastic anisotropy in solid living tissues. J Mater Sci Mater Med 1:1–8

    Article  Google Scholar 

  • Kollmann FFP (1951) Technologie des Holzes und der Holzwerkstoffe, vol. 1, 2nd edn. Spring-Verrlag, Berlin

    Google Scholar 

  • Konnerth J, Buksnowitz C, Gindl W, Hoffstetter K, Jager A (2010) Full set of elastic constants of spruce wood cell walls determined by nanoindentation. In: Proceedings of international convention of society wood science and technology and united nations economic commission for Europe—Timber Committee, Geneva, Switzerland. http://www.swst.org/meetings/AM10/pdfs/NT-2%20konnerth%20paper.pdf. Accessed 27 June 2014

  • Kudela J, Kunstar M (2011) Physical—acoustical characteristics of maple wood with wavy structure. Ann Warsaw Univ Life Sci Forestry and Wood Tech 75:12–18

    Google Scholar 

  • Marschner SR, Westin SH, Arbree A, Moon JT (2005) Measuring and modeling the appearance of finished wood. In: ACM transactions on graphics (TOG) SIGGRAPH 2005 Proceedings, vol 24, No 3, pp. 727–734. http://isafety.cse.msu.edu/~cse872/papers_files/appearance_of_wood.pdf. Accessed 27 June 2007

  • Mathieu S (2000) L’erable ondee- l’erable `a musique. In: Proceedings of European encounter on instrument making and restoration. “Matiere et musique”. The Cluny encounter, pp. 141–157

    Google Scholar 

  • Matsunga M, Minato K (1998) Physical and mechanical properties required for violin bow materials. II: comparison of the processing properties and durability between pernambuco and substitutable species. J Wood Sci 44:142–146

    Article  Google Scholar 

  • Matsuo M, Yokoyama M, Umemura et al (2011) Aging of wood: analysis of colour changes during natural aging and heat treatment. Holzforschung 65:361–368

    Article  Google Scholar 

  • Meucci R (2010) Strumentarion. Il costruttore di strumenti musicali nella tradizione occidentale. (The luthier. The maker of musical instruments in Western tradition) Marsilio Editori, S.P.A. Venezia

    Google Scholar 

  • Meyer HG (1995) A practical approach to the choice of the tone wood for the instruments of violin family. Catgut Acoust Soc J Series II 2(7):9–13

    Google Scholar 

  • Morrow A (2007) Evaluation of Australian timbers for use in musical instruments. Ed. Gottstein Fellowship reports. Clayton South, VIC, Gottstein Memorial Trust Fund. http://www.gottsteintrust.org/media/AMorrow.pdf

  • Morrow A, Bucur V, Evans R, Ngo D (2008) The elastic anisotropy of some Australian wood species used for acoustic guitars. In: Proceedings of 18th national congress, Australian institute of physics, Adelaide, Australia. http://www.aip.org.au/info/sites/default/files/Congress2008/AIPC2008/PDF/AUTHOR/AP081018.PDF

  • Nocetti M, Romagnoli M (2008) Seasonal cambial activity of spruce (Picea abies Karst) with indented rings in the Paneveggio Forest-Trento, Italy. Acta Biol Cracov Bot 50:27–34

    Google Scholar 

  • Ogner G, Bjor K (1988) Concentrations of elements in annual rings of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) from Arendal, in southern Norway. Meddelelser fra Norsk Institutt for Skogforskning—NorwayNorwegian Forest Research Institute no 40, p. 10

    Google Scholar 

  • Pérez-Pulido M, Bucur V, Morrow A, Dung Ngo (2010) Making violins with Tasmanian tonewood: expect the unexpected. In: Proceedings of 20th international congress on Acoustics, ICA 2010, 10 pp

    Google Scholar 

  • Picciolli L (1927) I legnami, technologia e utilizzazione boschiva. Torino, Unione Tipografico. Editrice Torinese

    Google Scholar 

  • Racko V, Misikov O, Seman B (2014) Effect the indentation of the annual growth rings in Norway spruce (Picea abies L) on shear strength—preliminary study. In: Proceedings of 57th International convention of society of wood science and Technology, Zvolen, Slovakia, 8 pp

    Google Scholar 

  • Rajčan E (1998) Application of acoustics to some problems of material science related to the making of musical instruments. Acta Acustica united with Acustica 84(1):122–128

    Google Scholar 

  • Rajcan E, Urgela S (2002) Maple wood for bowed musical instruments, its quality and heterogeneity. Acta Acustica united with Acustica 88(6):1005–1011

    Google Scholar 

  • Romagnoli M, Bernabei M, Codipietro G (2003) Density variations in spruce wood with indented rings (Picea abies Karst). Eur J Wood Wood Prod 61(4):311–312

    Article  Google Scholar 

  • Salmi A, Hintikka T, Karppinen T, Forsman P, Hæggström E (2007) Computerized ultrasound differentiation of curly birch from silver birch. J Appl Phys 101(2):024906

    Article  Google Scholar 

  • Salmi A, Hintikka T, Karppinen T, Forsman P, Hæggström E (2009) Automated differentiation of curly and silver birch by ultrasound attenuation. J. Applied Physics 105(2) :024902

    Google Scholar 

  • Scherbatskoy T, Matusiewicz H (1988) Chemistry of annual rings of red spruce and sugar maple in Vermont. Agric. Exp. Station, University of Vermont, Res. Rep. no 53

    Google Scholar 

  • Tolvaj L, Mitsui K (2005) Light source dependence of the photodegradation of wood. J. Wood Sci. 51:468–473

    Article  Google Scholar 

  • Uzielli L (2002) Legno di risonanza, legno con indentature. In: Atti del Convegno- Pred azzo “Legno di risonanza della Foresta di Paneveggio, technologia, impiego, valorizzazione”. La grafica S.R.L. Mori, Trento, pp. 39–47

    Google Scholar 

  • Venet J (1952) Les instruments de musique et le bois -3eme partie; le choix et production des bois de lutherie. Revue du Bois 9(10):20–23

    Google Scholar 

  • Venn TJ, Whittaker K (2003) Potential specialty timber markets for hardwoods of Western Queensland, Australia. Small-scale For Econ Manag Policy 2(3):377–395

    Google Scholar 

  • Vetter RE, Coradin VR, Martino EC, Camargos J (1990) Wood colour-a comparison between determination methods. IAWA Bulletin 11(4):429–439

    Article  Google Scholar 

  • Vienot F, Bak A, Echard JP (2007) The peculiar BRDFs of flamed maple. In: Proceedings of CIE Expert Symposium on visual appearance 032: 230–234

    Google Scholar 

  • Vintoniv IS (1973) Effect of growth conditions of Acer pseudoplatanus on the acoustical properties of its wood. Lesnoi J 16(2):103–105

    Google Scholar 

  • Wegst UGW (2006) Wood for sound. Am J Bot 93(10):1439–1448

    Article  Google Scholar 

  • Wegst UGK (2008) Bamboo and wood in musical instruments. Ann Rev Mater Res 38:323–349

    Article  Google Scholar 

  • Wilkins AP, Stamp CM (1990) Relationship between wood colour, silvicultural treatment and rate of growth in Eucalyptus grandis Hill (Maiden). Wood Sci Tech 24(4):297–304

    Article  Google Scholar 

Standards in German

  • DIN 52 033 (1979) Colour measurement: basic technology of colour metrics

    Google Scholar 

  • DIN 52 185 (1976) Testing of wood: compression test parallel to grain

    Google Scholar 

  • DIN 52 186 (1978) Testing of wood: bending test

    Google Scholar 

  • DIN 52 188 (1979) Testing of wood: determination of ultimate tensile stress parallel to grain

    Google Scholar 

  • DIN 6721-1 (2003) Plastics—Determination of dynamic mechanical properties – Part I General principles see also ISO 67212-1 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Appendices

Appendices

17.1.1 Appendix 1: Spruce with Indented Rings

Classes of indentations for “hasel” spruce with indented rings (data from Bonamini 2002)

Classes

Intensity of indentation

Classes as defined by Fukazawa and Ohtani (1984)

 

Minimum

Geometric Average

Maximum

0—No. indentation

   

Class A

1

0.022098

0.03125

0.044194

Class B

2

0.044195

0.0625

0.08838

Class B

3

0.08839

0.125

0.17677

Class B

4

0.17678

0.25

0.35355

Class B

5

0.35356

0.5

0.70710

Class C

6

0.70711

1

1.41421

Class C

7

1.41422

2

2.82842

Class C

8

2.82843

4

5.65685

Class C

9

5.65686

8

5.65685

Class C

10

11.31371

16

11.31370

Class C

11

22.62742

32

22.62741

Class C

12

45.25484

64

90.50966

Class C

13 Maximum indentation

90.50967

128

181.0193

Class C

17.1.2 Appendix 2: Some Acoustic Properties of Australian Species

Acoustic impedance and acoustic radiation of some Australian species (Bucur 1991 unpublished data)

 

Acoustic impedance 106 (v.ρ)

Acoustic radiation (v.ρ−1)

 

Longitudinal [P] waves

 

V LL

V RR

V TT

Ratio

V LL /V RR

VLLρ−1

VRRρ−1

VTTρ−1

Ratio

V LL /V RR

Cedar

Melia azedarach

2.17

0.58

0.27

3.74

10.30

2.52

3.09

3.33

Queensland maple

Flindersia brayleyana

2.43

0.88

0.78

2.76

9.72

3.52

3.16

2.76

Silky oak, brown

Darlingia darlingiana

2.79

1.20

0.78

2.33

8.72

3.76

2.45

2.31

Queensland walnut

Endiandra palmerstonii

2.90

1.17

1.02

2.48

7.43

2.99

2.62

2.48

Sassafras

Doryphora sassafras

3.46

1.18

0.97

2.93

8.04

2.73

2.27

2.94

Blackwood

Acacia melanoxylon

3.59

1.63

1.03

2.20

7.81

3.53

2.23

2.21

Silver ash

Flindersia bourjotiana

3.48

1.43

0.83

2.43

6.70

2.76

1.60

2.42

Myrtle beech

Nothofagus cunninghamii

3.41

1.62

1.46

2.10

5.47

2.59

2.35

2.11

Red gum (curly)

Eucalyptus camaldulensis

3.11

1.63

0.84

1.90

4.37

2.30

1.18

1.90

Mountain ash

Eucalyptus oreades

4.05

1.30

1.16

3.11

5.48

1.77

1.58

3.09

Jarrah

Eucalyptus marginata

3.71

1.54

1.12

2.40

4.96

2.06

1.50

2.40

Shear waves

 

V TR

V LT

V LR

Ratio

V LR /V LT

V TR −1

V LT −1

V LR −1

Ratio

V LR /V LT

Cedar

Melia azedarach

0.27

0.53

0.64

1.20

1.31

2.52

3.04

1.21

Queensland maple

Flindersia brayleyana

0.35

0.67

0.68

1.02

1.41

2.67

2.72

1.02

Silky oak, brown

Darlingia darlingiana

0.37

0.59

0.69

1.15

1.15

1.81

2.16

1.19

Queensland walnut

Endiandra palmerstonii

0.45

0.74

0.79

1.06

1.15

1.92

2.01

1.02

Sassafras

Doryphora sassafras

0.52

0.84

0.83

0.98

1.22

1.96

1.92

0.97

Blackwood

Acacia melanoxylon

0.51

0.88

1.03

1.17

1.11

2.00

2.24

1.12

Silver ash

Flindersia bourjotiana

0.59

0.95

1.07

1.12

1.15

1.83

1.97

1.01

Myrtle beech

Nothofagus cunninghamii

0.69

1.03

1.10

1.06

1.11

1.65

1.76

1.07

Red gum (curly)

Eucalyptus camaldulensis

0.65

0.93

1.06

1.14

0.92

1.30

1.49

1.15

Mountain ash

Eucalyptus oreades

0.68

0.96

1.09

1.14

0.91

1.29

1.47

1.14

Jarrah

Eucalyptus marginata

0.64

1.00

0.99

0.99

0.85

1.34

1.33

0.99

17.1.3 Appendix 3: Moduli of Elasticity of Some Australian Species

Young’s modulus and shear modulus [108 N/m2] of some Australian species (unpublished data Bucur 1991)

 

Young’s moduli

Shear moduli

Anisotropy ratio

E L

E R

E T

G TR

G LT

G LR

E L /E R

E L /G TR

Cedar Melia azedarach

102.77

18.95

7.42

1.66

6.12

8.95

5.4

66.3

Queensland maple Flindersia brayleyana

118.24

15.52

13.86

2.50

8.73

9.25

7.6

47.3

Silky oak, brown Darlingia darlingiana

138.12

25.67

10.87

2.43

6.16

8.49

4.8

56.8

Queensland walnut Endiandra palmerstonii

134.79

21.92

16.77

3.27

8.78

9.94

6.1

41.2

Sassafras Doryphora sassafras

182.53

21.16

14.54

4.19

10.79

10.43

8.7

43.6

Black wood Acacia melanoxylon

190.73

38.44

15.66

3.84

11.58

15.73

4.9

38.9

Silver ash Flindersia bourjotiana

167.65

28.51

9.57

4.96

12.65

14.49

5.9

33.8

Myrtle beech Nothofagus cunninghamii

147.31

33.15

27.35

6.09

10.92

15.37

4.4

24.18

Red gum (curly) Eucalyptus camaldulensis

114.78

31.72

8.43

5.13

10.20

13.34

3.6

22.4

Mountain ash Eucalyptus oreades

190.96

19.82

15.84

5.32

10.64

123.80

9.6

35.8

Jarrah Eucalyptus marginata

159.01

27.38

14.53

4.71

11.69

11.48

5.8

33.8

17.1.4 Appendix 4: Variability of Some Australian Species

Variability of some Australian species expressed by physical, acoustical and mechanical parameters (unpublished data Bucur 1991)

Parameter

Units

Minimum

Maximum

Differences %

Density

kg/m3

459

859

87

Velocity VLL

m/s

3690

4940

33

Velocity VRT

m/s

603

883

46

Acoustic impedance ratio with P waves

106 kg m−2 s−1

1.90

3.11

63

Acoustic impedance ratio with S waves

0.99

1.17

18

Young’s modulus EL

108 N/m2

102.77

190.96

85

Young’s modulus ER

108 N/m2

15.52

38.44

83

Young’s modulus ET

108 N/m2

7.42

16.72

125

Shear modulus GTR

108 N/m2

1.66

6.09

266

Shear modulus GLT

108 N/m2

6.12

11.58

89

Shear modulus GLR

108 N/m2

8.95

15.73

75

Ratio EL/GRT

22.4

66.3

195

Ratio of Young’s moduli EL/ER

3.6

9.6

165

Ratio of Young’s moduli EL/ET

8.06

17.45

116

17.1.5 Appendix 5: Tasmanian Wood Species for Violins and Guitars

Acoustic impedance and acoustic radiation calculated from the values of velocities measured with P waves in three anisotropic directions of wood L, R and T (data from Perez-Pulido et al. 2010)

Species

Density (kg/m3)

Acoustic impedance (average values) expressed by the product velocity x density, in 3 principal directions of wood elastic symmetry, L, R, T [103 kg m−2 s−1]

Acoustic radiation (average values) expressed by the ratio velocity/density, in 3 principal directions of wood elastic symmetry, L, R, T [m4 kg−1 s−1]

In axis L

In axis R

In axis T

In axis L

In axis R

In axis T

Softwoods

King Billy Pine

400

1536

803

584

9.60

5.02

3.65

Huon Pine

550

2319

861

742

7.67

2.84

2.45

Celery-top Pine

650

2798

1240

981

6.69

2.94

2.32

Spruce tonewood

435

2737

926

588

14.46

4.89

3.11

Hardwoods

Blackwood

640

3056

1277

946

7.46

3.07

2.31

Myrtle

700

3325

1144

1087

6.78

2.33

2.22

Sassafras

473

2249

925

718

10.04

4.13

3.20

Curly maple

650

2827

1683

1244

6.69

3.98

2.94

  1. NB P waves—waves for which the propagation and polarization directions are parallel

17.1.6 Appendix 6: Tonewood Species

Mechanical parameters of tonewoods species determined with ultrasonic techniques and 1 MHz wide band transducers, on cubic specimens (25 × 25 × 25 mm). Terms of stiffness matrix [108 N/m2] (Bucur 1987)

Species

Density (kg/m3)

Terms of stiffness matrix

Diagonal terms

Off diagonal terms

C 11

C 22

C 33

C 44

C 55

C 66

C 12

C 12

C 12

Softwoods for the top of the violins Picea spp.

Picea abies 7 years natural drying

400

102.01

16.00

10.24

0.36

7.56

8.12

17.53

13.20

12.14

Pitcea Sitchensis 7 years natural drying

430

130.07

22.75

9.77

0.53

9.42

9.68

25.66

19.34

10.81

Picea engelmannii Old ? years natural drying

352

106.48

17.43

12.04

0.37

6.76

6.52

26.91

20.79

14.13

Hardwoods for the back and other elements of the violins Acer spp.

Acer pseudoplatanus 1 years natural drying

670

141.34

41.87

23.43

5.73

15.68

22.54

32.44

30.72

18.53

Acer platanoides 15 years natural drying

740

180.59

45.91

27.90

7.20

13.68

21.34

54.17

43.70

16.26

Acer macrophyllus 7 years natural drying

600

121.50

32.85

14.42

4.86

10.77

17.75

12.45

11.39

8.39

Acer saccharum 15 years natural drying

700

160.27

39.52

22.33

2.82

12.79

21.09

43.47

32.19

20.18

  1. Note the off diagonal terms were determined after optimisation procedure on experimental data obtained on specimens cut at 15°, 30°, 45°, 60° an 75° out of principal direction in each anisotropic plane. The specimens were provided by CM Hutchins and were cut for parts used for violins

17.1.7 Appendix 7: Anisotropy of Tonewood

Voigt and Reuss moduli averages and the compressive and shear anisotropy factors calculated from the data of Bucur (1987) for different tonewood species (Katz and Meunier 1990)

Species

Bulk moduli

Shear moduli

Anisotropy

Voigt bulk modulus

Reuss bulk modulus

Voigt shear modulus

Reuss shear modulus

Compression

Shear

K v

K R

G v

G R

A compression

A shear

GPa

GPa

GPa

GPa

%

%

Picea abies

2.38

0.839

0.890

0.0820

47.8

83.2

Picea sitchensis

2.30

0.771

1.00

0.127

49.7

77.5

Picea Engelmannii

2.88

0.827

0.764

0.054

55.3

86.7

Acer pseudoplatanus

4.11

2.19

1.71

0.996

30.6

26.4

Acer platanoides

5.15

2.15

1.85

1.17

41.1

22.6

Acer saccharum

4.60

2.10

1.57

0.662

37.3

40.8

  1. Note
  2. Voigt parameters were calculated as
  3. \({\text{K}}^{\text{v}} = \left[ {{\text{C}}_{ 1 1} + {\text{C}}_{ 2 2} + {\text{C}}_{ 3 3} + 2\left( {{\text{C}}_{ 1 2} + {\text{C}}_{ 1 3} + {\text{C}}_{ 2 3} } \right)} \right]/ 9\)
  4. \({\text{G}}^{\text{V}} = \left[ {{\text{C}}_{ 1 1} + {\text{C}}_{ 2 2} + {\text{C}}_{ 3 3} + 3\left( {{\text{C}}_{ 4 4} + {\text{C}}_{ 5 5} + {\text{C}}_{ 6 6} } \right) - \left( {{\text{C}}_{ 1 2} + {\text{C}}_{ 1 3} + {\text{C}}_{ 2 3} } \right)} \right]/ 1 5\)
  5. Reuss parameters were calculated as
  6. \(\begin{aligned} {\text{K}}^{\text{R}} = &\Delta /[{\text{C}}_{ 1 1} \cdot {\text{C}}_{ 2 2} + {\text{C}}_{ 2 2} \cdot {\text{C}}_{ 3 3} + {\text{C}}_{ 3 3} \cdot {\text{C}}_{ 1 1} - 2\left( {{\text{C}}_{ 1 1} \cdot {\text{C}}_{ 2 3} + {\text{C}}_{ 2 2} \cdot {\text{C}}_{ 1 3} + {\text{C}}_{ 1 2} \cdot {\text{C}}_{ 3 3} } \right) \\ & + \, 2\left( {{\text{C}}_{ 1 2} \cdot {\text{C}}_{ 2 3} + {\text{C}}_{ 2 3} \cdot {\text{C}}_{ 1 3} + {\text{C}}_{ 1 2} \cdot {\text{C}}_{ 1 3} } \right) - \left( {{\text{C}}_{ 1 2}^{ 2} + {\text{C}}_{ 1 3}^{2} + {\text{C}}_{ 2 3}^{2} } \right)] \\ \end{aligned}\)
  7. \(\begin{aligned} {\text{G}}^{\text{R}} = & 1 5/( 4\{ \left( {{\text{C}}_{ 1 1} \cdot {\text{C}}_{ 2 2} + {\text{C}}_{ 2 2} \cdot {\text{ C}}_{ 3 3} + {\text{C}}_{ 3 3} \cdot {\text{C}}_{ 1 1} + {\text{C}}_{ 1 1} \cdot {\text{C}}_{ 2 3} + {\text{C}}_{ 2 2} \cdot {\text{C}}_{ 1 3} + {\text{C}}_{ 1 2} \cdot {\text{C}}_{ 3 3} } \right) \\ & + \,\left[ {{\text{C}}_{ 1 2} \cdot \left( {{\text{C}}_{ 1 2} + {\text{C}}_{ 2 3} } \right) + {\text{C}}_{ 2 3} \left( {{\text{C}}_{ 1 3} + {\text{C}}_{ 2 3} } \right) + {\text{C}}_{ 1 3} \left( {{\text{C}}_{ 1 3} + {\text{C}}_{ 1 2} } \right)} \right]\} / \left( {{\text{C}}_{ 1 2}^{ 2} + {\text{C}}_{ 1 3}^{ 2} + {\text{C}}_{ 2 3}^{ 2} } \right)]\} /\Delta \\ & + \, 3\left( { 1/{\text{C}}_{ 4 4} + 1/{\text{C}}_{ 5 5} + 1/{\text{C}}_{ 6 6} } \right) \\ \end{aligned}\)
  8. \(\Delta = {\text{C}}_{ 1 1} \cdot {\text{C}}_{ 2 2} {\text{C}}_{ 3 3} + 2 {\text{C}}_{ 1 2} \cdot {\text{C}}_{ 1 3} \cdot {\text{C}}_{ 2 3} - \left( {{\text{C}}_{ 1 1} \cdot {\text{C}}_{ 2 3}^{ 2} + {\text{C}}_{ 2 2} \cdot {\text{C}}_{ 1 3}^{ 2} + {\text{C}}_{ 1 2}^{ 2} \cdot {\text{C}}_{ 3 3} } \right)\)
  9. Anisotropy
  10. \({\text{Ac}}(\% ) = \left( { 100\,{\text{K}}^{\text{v}} - {\text{K}}^{\text{R}} } \right)/\left( {{\text{K}}^{\text{v}} + {\text{K}}^{\text{R}} } \right)\)
  11. \({\text{As}}(\% ) = \left( { 100\,{\text{G}}^{\text{v}} - {\text{G}}^{\text{R}} } \right)/\left( {{\text{G}}^{\text{v}} + {\text{G}}^{\text{R}} } \right)\)
  12. It notifying that when the strain is uniform across the interface, Voigt modulus represents the upper bound of the elastic properties of a multiphase system, whereas the Reuss modulus represents the lower bound

17.1.8 Appendix 8: Australian Species for Violin and Guitar

List of Australian wood species for violin and guitar parts (data from Morrow 2007)

Genus and species

Common name

Soundboard

Bridge and fret boards

Neck and hell

Acacia aneura

Mulga

Guitar, violin

Acacia harpophylla

Brigalow

Guitar, violin

Acacia cambagei

Gidgee

Guitar, violin

Acacia melanoxylon

Blackwood

Guitar

Guitar

Acacia papyrocarpa

Myall

Guitar, violin

Acacia pendula

Boree

Guitar, violin

Agathis robusta

Kauri pine

Guitar, violin, cello

Agonis juniperina

Warren river cedar

Guitar

Araucaria bidwillii

Bunya pine

Guitar

Araucaria cunninghamii

Hoop pine

Guitar violin

Atherosperma moschatum

Sassafras

Guitar

Athrotaxis selaginoides

King William pine Or “King Billy”

Guitar

Cardwellia sublimis

Northern silky oak

Guitar, violin

Dysoxylum fraseranum

Rose mahogany

Guitar

Erythrophleum chlorostachys

Cooktown ironwood

Guitar, violin

Eucalyptus marginata

Jarrah

Guitar, violin

Guitar

Eucalyptus regnans

Victorian ash

Guitar

Eucalyptus wandoo

wandoo

Guitar, violin

Flindersia brayleyana

Qld. maple

Guitar

Violin, guitar

Flindersia australis

Crows ash

Guitar, violin

Flindersia schottiana

Silver ash

Violin, guitar

Grevillea striata

Beefwood

Guitar, violin

Lagarostrobos franklinii

Huon pine

Guitar

Phebalium squameum

Satinwood

Violin, guitar

Phyllocladus aspleniifolius

Celery-top pine

Guitar

Podocarpus aramus

Black pine

Violin

Podocarpus neriifolius

Brown pine

Violin

Toona australis

Australian red cedar

Guitar

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bucur, V. (2016). About Traditional and New Wood Species for String Instruments. In: Handbook of Materials for String Musical Instruments. Springer, Cham. https://doi.org/10.1007/978-3-319-32080-9_17

Download citation

Publish with us

Policies and ethics