Skip to main content

Novikov’s Conjecture

  • Chapter
  • First Online:
Open Problems in Mathematics

Abstract

We describe Novikov’s “higher signature conjecture,” which dates back to the late 1960s, as well as many alternative formulations and related problems. The Novikov Conjecture is perhaps the most important unsolved problem in high-dimensional manifold topology, but more importantly, variants and analogues permeate many other areas of mathematics, from geometry to operator algebras to representation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Spheres have stably trivial tangent bundle and no interesting cohomology, so one’s first guess might be that the theory of vector bundles and the signature theorem might be irrelevant to studying homotopy spheres. Milnor, however, showed that one can construct lots of manifolds with the homotopy type of a 7-sphere as unit sphere bundles in rank-4 vector bundles over S 4. He also showed that the signature of an 8-manifold bounded by such a manifold yields lots of information about the homotopy sphere.

  2. 2.

    The same does not hold for the torsion part of the Pontrjagin classes, as one can see from calculations with lens spaces [87, Sect. 3].

  3. 3.

    A precise statement to this effect may be found in [31, Theorem 6.5]. It says for example that if M is a closed simply connected manifold and dimM is not divisible by 4, then for any set of elements \(x_{j} \in H^{4j}(M, \mathbb{Q})\), \(1 \leq j \leq \left \lfloor \frac{\dim M} {4} \right \rfloor \), there is a positive integer R such that for any integer m, there is a homotopy equivalence of manifolds φ m :  M m  → M such that \(p_{j}(M'_{m}) =\varphi _{ m}^{{\ast}}{\bigl (p_{j}(M) + m\,R\,x_{j}\bigr )}\).

  4. 4.

    Once the dimension is bigger than 4!

  5. 5.

    It turns out that (2) coincides with the analogue of (1) in the topological, rather than smooth, category, but the difference between these is rather small since all homotopy groups of TopO are torsion.

  6. 6.

    The group operation is the connected sum; inversion comes from reversing the orientation.

  7. 7.

    Just for the experts: one needs to use the − decoration on the L-spectra here.

  8. 8.

    It is known that the natural map C (π) ↠ C r (π) is an isomorphism if and only if π is amenable.

  9. 9.

    In the extreme case where π is a torsion group, \(\mathcal{E}\pi = \text{pt}\), while if π is nontrivial, E π is necessarily infinite dimensional.

  10. 10.

    Recall that two varieties are said to be birationally equivalent if there are rational maps between them which are inverses of each. Since rational maps do not have to be everywhere defined (this is why we denote rational maps below by dotted lines), two varieties are birationally equivalent if and only if they have Zariski-open subsets which are isomorphic as varieties.

  11. 11.

    It takes a bit of work to make sense of φ here, since φ may not be everywhere defined, but this can be done. The point is that by the factorization theorem for birational maps [1], we can factor φ into a sequence of blow-ups and blow-downs, and φ is clearly defined for a blow-down (since it is a continuous map) and is an isomorphism in this case by the Baum-Fulton-MacPherson variant of Grothendieck-Riemann-Roch [12]. In the case of a blow-up, let φ be given by the inverse of the map induced by the reverse blow-down.

References

  1. Abramovich, D., Karu, K., Matsuki, K., Włodarczyk, J.: Torification and factorization of birational maps. J. Amer. Math. Soc. 15 (3), 531–572 (electronic) (2002). DOI 10.1090/S0894-0347-02-00396-X

    Google Scholar 

  2. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. III. Ann. of Math. (2) 87, 546–604 (1968)

    Google Scholar 

  3. Aubert, A.M., Baum, P., Plymen, R., Solleveld, M.: On the local Langlands correspondence for non-tempered representations. Münster J. Math. 7, 27–50 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bartels, A., Farrell, F.T., Lück, W.: The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. J. Amer. Math. Soc. 27 (2), 339–388 (2014). DOI 10.1090/S0894-0347-2014-00782-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartels, A., Lück, W.: Isomorphism conjecture for homotopy K-theory and groups acting on trees. J. Pure Appl. Algebra 205 (3), 660–696 (2006). DOI 10.1016/j.jpaa.2005.07.020

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartels, A., Lück, W., Reich, H.: The K-theoretic Farrell-Jones conjecture for hyperbolic groups. Invent. Math. 172 (1), 29–70 (2008). DOI 10.1007/s00222-007-0093-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartels, A., Reich, H.: On the Farrell-Jones conjecture for higher algebraic K-theory. J. Amer. Math. Soc. 18 (3), 501–545 (2005). DOI 10.1090/ S0894-0347-05-00482-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Bass, H., Murthy, M.P.: Grothendieck groups and Picard groups of abelian group rings. Ann. of Math. (2) 86, 16–73 (1967)

    Google Scholar 

  9. Baum, P., Connes, A.: Chern character for discrete groups. In: A fête of topology, pp. 163–232. Academic Press, Boston, MA (1988). DOI 10.1016/B978-0-12-480440-1.50015-0

    Google Scholar 

  10. Baum, P., Connes, A.: Geometric K-theory for Lie groups and foliations. Enseign. Math. (2) 46 (1–2), 3–42 (2000)

    Google Scholar 

  11. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and K-theory of group C -algebras. In: C -algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, pp. 240–291. Amer. Math. Soc., Providence, RI (1994). DOI 10.1090/conm/167/1292018

    Google Scholar 

  12. Baum, P., Fulton, W., MacPherson, R.: Riemann-Roch and topological K theory for singular varieties. Acta Math. 143 (3–4), 155–192 (1979). DOI 10.1007/BF02392091

    Article  MathSciNet  MATH  Google Scholar 

  13. Baum, P., Guentner, E., Willett, R.: Expanders, exact crossed products, and the Baum-Connes conjecture. Ann. of K-Theory, 1 (2), 155–208 (2016). URL http://arxiv.org/abs/1311.2343.

    Google Scholar 

  14. Baum, P., Higson, N., Plymen, R.: A proof of the Baum-Connes conjecture for p-adic GL(n). C. R. Acad. Sci. Paris Sér. I Math. 325 (2), 171–176 (1997). DOI 10.1016/S0764-4442(97)84594-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Block, J., Weinberger, S.: Higher Todd classes and holomorphic group actions. Pure Appl. Math. Q. 2 (4, Special Issue: In honor of Robert D. MacPherson. Part 2), 1237–1253 (2006). DOI 10.4310/PAMQ.2006.v2. n4.a13

    Google Scholar 

  16. Bökstedt, M., Hsiang, W.C., Madsen, I.: The cyclotomic trace and algebraic K-theory of spaces. Invent. Math. 111 (3), 465–539 (1993). DOI 10.1007/ BF01231296

    Article  MathSciNet  MATH  Google Scholar 

  17. Borisov, L., Libgober, A.: Higher elliptic genera. Math. Res. Lett. 15 (3), 511–520 (2008). DOI 10.4310/MRL.2008.v15.n3.a10

    Article  MathSciNet  MATH  Google Scholar 

  18. Botvinnik, B., Gilkey, P., Stolz, S.: The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology. J. Differential Geom. 46 (3), 374–405 (1997). URL http://projecteuclid.org/euclid.jdg/1214459973

    Google Scholar 

  19. Brasselet, J.P., Schürmann, J., Yokura, S.: Hirzebruch classes and motivic Chern classes for singular spaces. J. Topol. Anal. 2 (1), 1–55 (2010). DOI 10.1142/S1793525310000239

    Article  MathSciNet  MATH  Google Scholar 

  20. Browder, W.: Poincaré spaces, their normal fibrations and surgery. Invent. Math. 17, 191–202 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Browder, W.: Surgery on simply-connected manifolds. Springer-Verlag, New York-Heidelberg (1972). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65

    Google Scholar 

  22. Browder, W.: Differential topology of higher-dimensional manifolds. In: Surveys on surgery theory, Vol. 1, Ann. of Math. Stud., vol. 145, pp. 41–71. Princeton Univ. Press, Princeton, NJ (2000)

    Google Scholar 

  23. Cappell, S.E.: On homotopy invariance of higher signatures. Invent. Math. 33 (2), 171–179 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cappell, S.E., Libgober, A., Maxim, L.G., Shaneson, J.L.: Hodge genera of algebraic varieties. II. Math. Ann. 345 (4), 925–972 (2009). DOI 10.1007/s00208-009-0389-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Carlsson, G.: Bounded K-theory and the assembly map in algebraic K-theory. In: Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 227, pp. 5–127. Cambridge Univ. Press, Cambridge (1995). DOI 10.1017/CBO9780511629365.004

    Google Scholar 

  26. Carlsson, G., Pedersen, E.K.: Controlled algebra and the Novikov conjectures for K- and L-theory. Topology 34 (3), 731–758 (1995). DOI 10.1016/0040-9383(94)00033-H

    Article  MathSciNet  MATH  Google Scholar 

  27. Chang, S., Weinberger, S.: On invariants of Hirzebruch and Cheeger-Gromov. Geom. Topol. 7, 311–319 (electronic) (2003). DOI 10.2140/gt.2003.7.311

    Google Scholar 

  28. Chen, X., Wang, Q., Yu, G.: The maximal coarse Baum-Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space. Adv. Math. 249, 88–130 (2013). DOI 10.1016/j.aim.2013.09.003

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, X., Wang, Q., Yu, G.: The coarse Novikov conjecture and Banach spaces with Property (H). J. Funct. Anal. 268 (9), 2754–2786 (2015). DOI 10.1016/j.jfa.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  30. Cortiñas, G., Tartaglia, G.: Trace class operators, regulators, and assembly maps in K-theory. Doc. Math. 19, 439–456 (2014). URL https://www.math.uni-bielefeld.de/documenta/vol-19/14.pdf

  31. Davis, J.F.: Manifold aspects of the Novikov conjecture. In: Surveys on surgery theory, Vol. 1, Ann. of Math. Stud., vol. 145, pp. 195–224. Princeton Univ. Press, Princeton, NJ (2000)

    Google Scholar 

  32. Dranishnikov, A.N., Ferry, S.C., Weinberger, S.: Large Riemannian manifolds which are flexible. Ann. of Math. (2) 157 (3), 919–938 (2003). DOI 10.4007/annals.2003.157.919

    Google Scholar 

  33. Farrell, F.T., Hsiang, W.C.: Manifolds with π 1 = G × α T. Amer. J. Math. 95, 813–848 (1973)

    Google Scholar 

  34. Farrell, F.T., Jones, L.E.: Negatively curved manifolds with exotic smooth structures. J. Amer. Math. Soc. 2 (4), 899–908 (1989). DOI 10. 2307/1990898

    Google Scholar 

  35. Farrell, F.T., Jones, L.E.: Exotic smoothings of hyperbolic manifolds which do not support pinched negative curvature. Proc. Amer. Math. Soc. 121 (2), 627–630 (1994). DOI 10.2307/2160446

    Article  MathSciNet  MATH  Google Scholar 

  36. Ferry, S., Rosenberg, J., Weinberger, S.: Phénomènes de rigidité topologique équivariante. C. R. Acad. Sci. Paris Sér. I Math. 306 (19), 777–782 (1988)

    MathSciNet  Google Scholar 

  37. Ferry, S.C., Ranicki, A., Rosenberg, J.: A history and survey of the Novikov conjecture. In: Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, pp. 7–66. Cambridge Univ. Press, Cambridge (1995). DOI 10.1017/CBO9780511662676.003

    Google Scholar 

  38. Ferry, S.C., Ranicki, A., Rosenberg, J. (eds.): Novikov conjectures, index theorems and rigidity. Vol. 1, London Mathematical Society Lecture Note Series, vol. 226. Cambridge University Press, Cambridge (1995). Including papers from the conference held at the Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, September 6–10, 1993

    Google Scholar 

  39. Ferry, S.C., Ranicki, A., Rosenberg, J. (eds.): Novikov conjectures, index theorems and rigidity. Vol. 2, London Mathematical Society Lecture Note Series, vol. 227. Cambridge University Press, Cambridge (1995). Including papers from the conference held at the Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, September 6–10, 1993

    Google Scholar 

  40. Finn-Sell, M.: Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture. J. Funct. Anal. 267 (10), 3758–3782 (2014). DOI 10.1016/j.jfa.2014.09.012

    Article  MathSciNet  MATH  Google Scholar 

  41. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differential Geom. 17 (3), 357–453 (1982). URL http://projecteuclid.org/euclid.jdg/1214437136

    Google Scholar 

  42. Fukaya, T., Oguni, S.i.: Coronae of product spaces and the coarse Baum–Connes conjecture. Adv. Math. 279, 201–233 (2015). DOI 10. 1016/j.aim.2015.01.022

    Google Scholar 

  43. Gong, D.: Equivariant Novikov conjecture for groups acting on Euclidean buildings. Trans. Amer. Math. Soc. 350 (6), 2141–2183 (1998). DOI 10.1090/S0002-9947-98-01990-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Gong, D., Liu, K.: Rigidity of higher elliptic genera. Ann. Global Anal. Geom. 14 (3), 219–236 (1996). DOI 10.1007/BF00054471

    Article  MathSciNet  MATH  Google Scholar 

  45. Gromov, M.: Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In: Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), Progr. Math., vol. 132, pp. 1–213. Birkhäuser Boston, Boston, MA (1996). DOI 10.1007/ s10107-010-0354-x

    Google Scholar 

  46. Gromov, M., Lawson Jr., H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. 58, 83–196 (1984) (1983). URL http://www.numdam.org/item?id=PMIHES_1983__58__83_0

    Google Scholar 

  47. Higson, N.: The Baum-Connes conjecture. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Extra Vol. II, pp. 637–646 (electronic) (1998). URL https://www.math.uni-bielefeld.de/documenta/xvol-icm/08/08.html

  48. Higson, N., Lafforgue, V., Skandalis, G.: Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal. 12 (2), 330–354 (2002). DOI 10.1007/s00039-002-8249-5

    Article  MathSciNet  MATH  Google Scholar 

  49. Higson, N., Roe, J.: On the coarse Baum-Connes conjecture. In: Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 227, pp. 227–254. Cambridge Univ. Press, Cambridge (1995). DOI 10.1017/ CBO9780511629365.008

    Google Scholar 

  50. Higson, N., Roe, J.: Analytic K-homology. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000). Oxford Science Publications

    Google Scholar 

  51. Higson, N., Roe, J.: Mapping surgery to analysis. I. Analytic signatures. K-Theory 33 (4), 277–299 (2005). DOI 10.1007/s10977-005-1561-8

    Google Scholar 

  52. Higson, N., Roe, J.: Mapping surgery to analysis. II. Geometric signatures. K-Theory 33 (4), 301–324 (2005). DOI 10.1007/s10977-005-1559-2

    Google Scholar 

  53. Higson, N., Roe, J.: Mapping surgery to analysis. III. Exact sequences. K-Theory 33 (4), 325–346 (2005). DOI 10.1007/s10977-005-1554-7

    Google Scholar 

  54. Hirzebruch, F.: The signature theorem: reminiscences and recreation. In: Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), pp. 3–31. Ann. of Math. Studies, No. 70. Princeton Univ. Press, Princeton, N.J. (1971)

    Google Scholar 

  55. Joachim, M., Schick, T.: Positive and negative results concerning the Gromov-Lawson-Rosenberg conjecture. In: Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, pp. 213–226. Amer. Math. Soc., Providence, RI (2000). DOI 10.1090/conm/258/04066

    Google Scholar 

  56. Kahn, P.J.: Characteristic numbers and oriented homotopy type. Topology 3, 81–95 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kasparov, G.: Novikov’s conjecture on higher signatures: the operator K-theory approach. In: Representation theory of groups and algebras, Contemp. Math., vol. 145, pp. 79–99. Amer. Math. Soc., Providence, RI (1993). DOI 10.1090/conm/145/1216182

    Google Scholar 

  58. Kasparov, G.G.: The homotopy invariance of rational Pontrjagin numbers. Dokl. Akad. Nauk SSSR 190, 1022–1025 (1970)

    MathSciNet  Google Scholar 

  59. Kasparov, G.G.: Topological invariants of elliptic operators. I. K-homology. Izv. Akad. Nauk SSSR Ser. Mat. 39 (4), 796–838 (1975)

    Google Scholar 

  60. Kasparov, G.G.: The operator K-functor and extensions of C -algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44 (3), 571–636, 719 (1980)

    Google Scholar 

  61. Kasparov, G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91 (1), 147–201 (1988). DOI 10.1007/BF01404917

    Article  MathSciNet  MATH  Google Scholar 

  62. Kasparov, G.G.: K-theory, group C -algebras, and higher signatures (conspectus). In: Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, pp. 101–146. Cambridge Univ. Press, Cambridge (1995). DOI 10.1017/CBO9780511662676.007

    Google Scholar 

  63. Kasprowski, D.: On the K-theory of groups with finite decomposition complexity. Proc. Lond. Math. Soc. (3) 110 (3), 565–592 (2015). DOI 10.1112/plms/pdu062

    Google Scholar 

  64. Kervaire, M.A.: Le théorème de Barden-Mazur-Stallings. Comment. Math. Helv. 40, 31–42 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kervaire, M.A., Milnor, J.W.: Groups of homotopy spheres. I. Ann. of Math. (2) 77, 504–537 (1963)

    Google Scholar 

  66. Kreck, M., Lück, W.: The Novikov conjecture, Geometry and algebra, Oberwolfach Seminars, vol. 33. Birkhäuser Verlag, Basel (2005).

    MATH  Google Scholar 

  67. Lafforgue, V.: K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math. 149 (1), 1–95 (2002). DOI 10.1007/s002220200213

    Article  MathSciNet  Google Scholar 

  68. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  69. Loday, J.L.: K-théorie algébrique et représentations de groupes. Ann. Sci. École Norm. Sup. (4) 9 (3), 309–377 (1976)

    Google Scholar 

  70. Lück, W.: K- and L-theory of group rings. In: Proceedings of the International Congress of Mathematicians. Volume II, pp. 1071–1098. Hindustan Book Agency, New Delhi (2010)

    Google Scholar 

  71. Lück, W., Reich, H.: The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory. In: Handbook of K-theory. Vol. 1, 2, pp. 703–842. Springer, Berlin (2005). DOI 10.1007/978-3-540-27855-9_15. URL http://k-theory.org/handbook/2-0703-0842.pdf

    Google Scholar 

  72. Lusztig, G.: Novikov’s higher signature and families of elliptic operators. J. Differential Geometry 7, 229–256 (1972)

    MathSciNet  MATH  Google Scholar 

  73. Mendes, S., Plymen, R.: Base change and K-theory for GL(n). J. Noncommut. Geom. 1 (3), 311–331 (2007). DOI 10.4171/JNCG/9

    Article  MathSciNet  MATH  Google Scholar 

  74. Milnor, J.: On manifolds homeomorphic to the 7-sphere. Ann. of Math. (2) 64, 399–405 (1956)

    Google Scholar 

  75. Milnor, J.: A procedure for killing homotopy groups of differentiable manifolds. In: Proc. Sympos. Pure Math., Vol. III, pp. 39–55. American Mathematical Society, Providence, R.I (1961)

    Google Scholar 

  76. Milnor, J.: Lectures on the h-cobordism theorem. Notes by L. Siebenmann and J. Sondow. Princeton University Press, Princeton, N.J. (1965)

    MATH  Google Scholar 

  77. Milnor, J.: Whitehead torsion. Bull. Amer. Math. Soc. 72, 358–426 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  78. Mishchenko, A.S.: Infinite-dimensional representations of discrete groups, and higher signatures. Izv. Akad. Nauk SSSR Ser. Mat. 38, 81–106 (1974)

    MathSciNet  Google Scholar 

  79. Mishchenko, A.S.: C -algebras and K-theory. In: Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, pp. 262–274. Springer, Berlin (1979)

    Google Scholar 

  80. Mitchener, P.D.: The general notion of descent in coarse geometry. Algebr. Geom. Topol. 10 (4), 2419–2450 (2010). DOI 10.2140/agt.2010.10.2419. URL http://msp.org/agt/2010/10-4/p18.xhtml

    Article  MathSciNet  Google Scholar 

  81. Novikov, S.P.: A diffeomorphism of simply connected manifolds. Dokl. Akad. Nauk SSSR 143, 1046–1049 (1962)

    MathSciNet  Google Scholar 

  82. Novikov, S.P.: Homotopically equivalent smooth manifolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 28, 365–474 (1964)

    MathSciNet  MATH  Google Scholar 

  83. Novikov, S.P.: Rational Pontrjagin classes. Homeomorphism and homotopy type of closed manifolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 29, 1373–1388 (1965)

    MATH  Google Scholar 

  84. Novikov, S.P.: Topological invariance of rational classes of Pontrjagin. Dokl. Akad. Nauk SSSR 163, 298–300 (1965)

    MathSciNet  MATH  Google Scholar 

  85. Novikov, S.P.: Pontrjagin classes, the fundamental group and some problems of stable algebra. In: Amer. Math. Soc. Translations Ser. 2, Vol. 70: 31 Invited Addresses (8 in Abstract) at the Internat. Congr. Math. (Moscow, 1966), pp. 172–179. Amer. Math. Soc., Providence, R.I. (1968)

    Google Scholar 

  86. Novikov, S.P.: Algebraic construction and properties of Hermitian analogs of K-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I. II. Izv. Akad. Nauk SSSR Ser. Mat. 34, 253–288; ibid. 34 (1970), 475–500 (1970)

    Google Scholar 

  87. Novikov, S.P.: Pontrjagin classes, the fundamental group and some problems of stable algebra. In: Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), pp. 147–155. Springer, New York (1970)

    Google Scholar 

  88. Novikov, S.P.: Analogues hermitiens de la K-théorie. In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 39–45. Gauthier-Villars, Paris (1971)

    Google Scholar 

  89. Piazza, P., Schick, T.: The surgery exact sequence, K-theory and the signature operator. Ann. of K-Theory, 1 (2), 109–154 (2016). URL http://arxiv.org/abs/1309.4370, DOI 10.2140/akt.2016.1.109.

    Google Scholar 

  90. Plymen, R.J.: Reduced C -algebra of the p-adic group GL(n). II. J. Funct. Anal. 196 (1), 119–134 (2002). DOI 10.1006/jfan.2002. 3980

    Article  MathSciNet  MATH  Google Scholar 

  91. Quinn, F.: A geometric formulation of surgery. In: Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), pp. 500–511. Markham, Chicago, Ill. (1970)

    Google Scholar 

  92. Ramras, D.A., Tessera, R., Yu, G.: Finite decomposition complexity and the integral Novikov conjecture for higher algebraic K-theory. J. Reine Angew. Math. 694, 129–178 (2014). DOI 10.1515/ crelle-2012-0112

    MathSciNet  MATH  Google Scholar 

  93. Ranicki, A.: The total surgery obstruction. In: Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, pp. 275–316. Springer, Berlin (1979)

    Google Scholar 

  94. Ranicki, A.: Algebraic and geometric surgery. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2002). DOI 10.1093/acprof:oso/9780198509240.001.0001. Oxford Science Publications

    Google Scholar 

  95. Ranicki, A.A.: Algebraic L-theory and topological manifolds, Cambridge Tracts in Mathematics, vol. 102. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  96. Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc. 104 (497), x+90 (1993). DOI 10. 1090/memo/0497

    Google Scholar 

  97. Rosenberg, J.: C -algebras, positive scalar curvature, and the Novikov conjecture. Inst. Hautes Études Sci. Publ. Math. 58, 197–212 (1984) (1983). URL http://www.numdam.org/item?id=PMIHES_1983__58__197_0

    Google Scholar 

  98. Rosenberg, J.: C -algebras, positive scalar curvature, and the Novikov conjecture. III. Topology 25 (3), 319–336 (1986). DOI 10.1016/0040-9383(86)90047-9

    Article  MathSciNet  MATH  Google Scholar 

  99. Rosenberg, J.: Analytic Novikov for topologists. In: Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, pp. 338–372. Cambridge Univ. Press, Cambridge (1995). DOI 10.1017/CBO9780511662676.013

    Google Scholar 

  100. Rosenberg, J.: Manifolds of positive scalar curvature: a progress report. In: Surveys in differential geometry. Vol. XI, Surv. Differ. Geom., vol. 11, pp. 259–294. Int. Press, Somerville, MA (2007). DOI 10.4310/ SDG.2006.v11.n1.a9

    Google Scholar 

  101. Rosenberg, J.: An analogue of the Novikov conjecture in complex algebraic geometry. Trans. Amer. Math. Soc. 360 (1), 383–394 (2008). DOI 10.1090/S0002-9947-07-04320-6

    Article  MathSciNet  MATH  Google Scholar 

  102. Rosenberg, J.: Structure and applications of real C -algebras. In: R.S. Doran, E. Park (eds.) Operator Algebras and Their Applications: A Tribute to Richard V. Kadison. Contemporary Math., Amer. Math. Soc., 2016. URL http://arxiv.org/abs/1505.04091

  103. Rosenberg, J., Stolz, S.: A “stable” version of the Gromov-Lawson conjecture. In: The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, pp. 405–418. Amer. Math. Soc., Providence, RI (1995). DOI 10.1090/conm/181/02046

    Google Scholar 

  104. Rosenberg, J., Weinberger, S.: Higher G-indices and applications. Ann. Sci. École Norm. Sup. (4) 21 (4), 479–495 (1988). URL http://www.numdam.org/item?id=ASENS_1988_4_21_4_479_0

    Google Scholar 

  105. Rosenberg, J., Weinberger, S.: An equivariant Novikov conjecture. K-Theory 4 (1), 29–53 (1990). DOI 10.1007/BF00534192. With an appendix by J. P. May

    Google Scholar 

  106. Rosenberg, J., Weinberger, S.: The signature operator at 2. Topology 45 (1), 47–63 (2006). DOI 10.1016/j.top.2005.06.001

    Article  MathSciNet  MATH  Google Scholar 

  107. Roushon, S.K.: The isomorphism conjecture in L-theory: graphs of groups. Homology Homotopy Appl. 14 (1), 1–17 (2012). DOI 10.4310/HHA.2012.v14.n1.a1

    Article  MathSciNet  MATH  Google Scholar 

  108. Schick, T.: A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture. Topology 37 (6), 1165–1168 (1998). DOI 10.1016/S0040-9383(97)00082-7

    Article  MathSciNet  MATH  Google Scholar 

  109. Smale, S.: Generalized Poincaré’s conjecture in dimensions greater than four. Ann. of Math. (2) 74, 391–406 (1961)

    Google Scholar 

  110. Solleveld, M.: Periodic cyclic homology of reductive p-adic groups. J. Noncommut. Geom. 3 (4), 501–558 (2009). DOI 10.4171/JNCG/45

    Article  MathSciNet  MATH  Google Scholar 

  111. Sullivan, D.P.: Triangulating and smoothing homotopy equivalences and homeomorphisms. Geometric Topology Seminar Notes. In: The Hauptvermutung book, K-Monogr. Math., vol. 1, pp. 69–103. Kluwer Acad. Publ., Dordrecht (1996). DOI 10.1007/978-94-017-3343-4_3

    Google Scholar 

  112. Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954). URL http://retro.seals.ch/digbib/view?rid=comahe-002:1954:28::8

    Google Scholar 

  113. Tu, J.L.: The Baum-Connes conjecture for groupoids. In: C -algebras (Münster, 1999), pp. 227–242. Springer, Berlin (2000) www.e-periodica.ch/digbib/view?pid=com-001:1954:28::8

    Google Scholar 

  114. Tu, J.L.: The coarse Baum-Connes conjecture and groupoids. II. New York J. Math. 18, 1–27 (2012). URL http://nyjm.albany.edu:8000/j/2012/18_1.html

  115. Wall, C.T.C.: Surgery of non-simply-connected manifolds. Ann. of Math. (2) 84, 217–276 (1966)

    Google Scholar 

  116. Wall, C.T.C.: Surgery on compact manifolds, Mathematical Surveys and Monographs, vol. 69, second edn. American Mathematical Society, Providence, RI (1999). DOI 10.1090/surv/069. Edited and with a foreword by A. A. Ranicki

    Google Scholar 

  117. Wallace, A.H.: Modifications and cobounding manifolds. Canad. J. Math. 12, 503–528 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  118. Wassermann, A.: Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs. C. R. Acad. Sci. Paris Sér. I Math. 304 (18), 559–562 (1987)

    MathSciNet  MATH  Google Scholar 

  119. Weinberger, S.: The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1994)

    MATH  Google Scholar 

  120. Yu, G.: Coarse Baum-Connes conjecture. K-Theory 9 (3), 199–221 (1995). DOI 10.1007/BF00961664

    Google Scholar 

  121. Yu, G.: The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (1), 201–240 (2000). DOI 10.1007/s002229900032

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Work on this paper was partially supported by the United States National Science Foundation, grant number 1206159. I would like to thank Greg Friedman, Daniel Kasprowski, Andrew Ranicki, and Shmuel Weinberger for useful feedback on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenberg, J. (2016). Novikov’s Conjecture. In: Nash, Jr., J., Rassias, M. (eds) Open Problems in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-32162-2_11

Download citation

Publish with us

Policies and ethics