Skip to main content

The Hodge Conjecture

  • Chapter
  • First Online:
Open Problems in Mathematics

Abstract

This is an introduction to the Hodge conjecture, which, although intended to a general mathematical audience, assumes some knowledge of topology and complex geometry. The emphasis will be put on the importance of the notion of Hodge structure in complex algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. André. Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses, 17. Société Mathématique de France, Paris, (2004).

    Google Scholar 

  2. Y. André. Pour une théorie inconditionnelle des motifs, Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 5–49.

    Article  Google Scholar 

  3. M. Atiyah, F. Hirzebruch. Analytic cycles on complex manifolds, Topology 1, 25–45 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Blanchard. Sur les variétés analytiques complexes, Ann. Sci. École Norm. Sup. (3) 73 (1956), 157–202.

    Google Scholar 

  5. S. Bloch. Semi-regularity and de Rham cohomology. Invent. Math. 17 (1972), 51–66.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bloch. Lectures on algebraic cycles. Duke University Mathematics Series, IV. Duke University, Mathematics Department, Durham, N.C., (1980).

    Google Scholar 

  7. E. Cattani, P. Deligne, A. Kaplan. On the locus of Hodge classes, J. Amer. Math. Soc. 8 (1995), 2, 483–506.

    Google Scholar 

  8. P. Deligne. Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. No. 40, 5–57 (1971).

    Google Scholar 

  9. P. Deligne. Hodge cycles on abelian varieties (notes by JS Milne), in Springer LNM, 900 (1982), 9–100.

    Google Scholar 

  10. P. Deligne. La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972), 206–226.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Deligne. Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. No. 35 1968 259–278.

    MathSciNet  MATH  Google Scholar 

  12. J.-P. Demailly. Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361–409.

    MathSciNet  MATH  Google Scholar 

  13. Ph. Griffiths. A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles. Amer. J. Math. 101 (1979), no. 1, 94–131.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ph. Griffiths. Periods of integrals on algebraic manifolds. II. Local study of the period mapping. Amer. J. Math. 90 (1968) 805–865.

    MATH  Google Scholar 

  15. A. Grothendieck. Hodge’s general conjecture is false for trivial reasons, Topology 8 299–303 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Grothendieck. On the de Rham cohomology of algebraic varieties. Pub. math. IHÉS 29, 95–103 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Hodge. Differential forms on a Kähler manifold. Proc. Cambridge Philos. Soc. 47, (1951), 504–517.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Hodge. The topological invariants of algebraic varieties. Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, pp. 182–192. Amer. Math. Soc., Providence, R. I., (1952).

    Google Scholar 

  19. U. Jannsen. Mixed motives and algebraic K-theory. With appendices by S. Bloch and C. Schoen. Lecture Notes in Mathematics, 1400. Springer-Verlag, Berlin, (1990).

    Google Scholar 

  20. J. Kollár. Lemma p. 134 in Classification of irregular varieties, edited by E. Ballico, F. Catanese, C. Ciliberto, Lecture Notes in Math. 1515, Springer.

    Google Scholar 

  21. S. Kleiman. Algebraic cycles and the Weil conjectures in Dix exposés sur la cohomologie des schémas, pp. 359–386. North-Holland, Amsterdam; Masson, Paris, 1968.

    Google Scholar 

  22. M. Kuga, I. Satake. Abelian varieties attached to polarized K3-surfaces, Math. Ann. 169 (1967) 239–242.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Lewis. A survey of the Hodge conjecture, second edition with an appendix B by B. Brent Gordon, CRM Monograph Series, 10. American Mathematical Society, Providence, RI, (1999).

    Google Scholar 

  24. D. Lieberman, Numerical and homological equivalence of algebraic cycles on Hodge manifolds, Amer. J. Math. 90 (1968), 366–374

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Peters, J. Steenbrink. Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete 52. Springer-Verlag, Berlin, (2008).

    Google Scholar 

  26. M. Saito, Ch. Schnell. Fields of definition of Hodge loci, arXiv:1408.2488.

    Google Scholar 

  27. J.-P. Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42.

    Google Scholar 

  28. C. Soulé, C. Voisin. Torsion cohomology classes and algebraic cycles on complex projective manifolds, Advances in Mathematics, Vol 198/1 pp 107–127 (2005).

    Google Scholar 

  29. Uhlenbeck, Yau. On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293.

    Google Scholar 

  30. C. Voisin. A counterexample to the Hodge conjecture extended to Kähler varieties, IMRN (2002), no. 20, 1057–1075.

    Google Scholar 

  31. C. Voisin. Hodge theory and complex algebraic geometry I, Cambridge studies in advanced mathematics 76, Cambridge University Press (2002).

    Book  Google Scholar 

  32. C. Voisin. Hodge theory and complex algebraic geometry II, Cambridge studies in advanced mathematics 77, Cambridge University Press (2003).

    Book  Google Scholar 

  33. C. Voisin. The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, Annales scientifiques de l’ENS 46, fascicule 3 (2013), 449–475.

    Google Scholar 

  34. C. Voisin. Hodge loci and absolute Hodge classes, Compositio Mathematica, Vol. 143 Part 4, 945–958, (2007).

    Google Scholar 

  35. C. Voisin. Hodge loci, in Handbook of moduli (Eds G. Farkas and I. Morrison), Advanced Lectures in Mathematics 25, Volume III, International Press, 507–547 (2013).

    Google Scholar 

  36. S. Zucker. The Hodge conjecture for cubic fourfolds. Compositio Math. 34 (1977), no. 2, 199–209.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Voisin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Voisin, C. (2016). The Hodge Conjecture. In: Nash, Jr., J., Rassias, M. (eds) Open Problems in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-32162-2_17

Download citation

Publish with us

Policies and ethics