Skip to main content

Navier Stokes Equations: A Quick Reminder and a Few Remarks

  • Chapter
  • First Online:
Open Problems in Mathematics

Abstract

We describe briefly some mathematical problems related to the Navier-Stokes and Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Bardos, E.S. Titi, Mathematics and turbulence: where do we stand? Journal of Turbulence 14 (2013), 42–76.

    Article  MathSciNet  Google Scholar 

  2. J. T. Beale, T. Kato and A. J. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61–66.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Buckmaster, C. De Lellis, P. Isett and L. Székelyhidi Jr., Anomalous dissipation for 1/5-Hölder Euler flows, Annals of Mathematics, 2015

    MATH  Google Scholar 

  4. L. Berselli and G. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proceedings of the AMS, 130 (12), (2002), 3585–3595.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Beirao da Veiga, Direction of Vorticity and Regularity up to the Boundary: On the Lipschitz-Continuous Case, Journal of Mathematical Fluid Mechanics 15 (2013), 55–63.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Math. 35 (1982), 771–831.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity, 21 (2008) 1233–1252.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations, Commun. Math. Phys. 104 (1986), 311–326.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Constantin, Navier-Stokes equations and area of interfaces, Commun.Math. Phys. 129 (1990), 241–266.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Constantin, An Eulerian-Lagrangian approach to the Navier-Stokes equations, Commun. Math. Phys., 216 (2001), 663–686.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Constantin, Local formulas for the hydrodynamic pressure and applications, Russian Mathematical Surveys, 69 (2014), 395–418.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Constantin, On the Euler equations of incompressible fluids, Bulletin of the AMS 44, (2007), 603–621.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Constantin, W. E, and E.S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys., 165 (1994) 207–209.

    Google Scholar 

  14. P. Constantin, C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. Journal, 42 (1993), 775–787.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Constantin, I. Kukavica, V. Vicol, On the inviscid limit of the Navier-Stokes equations, Proc. Amer. Math. Soc. 143 (2015), 3075–3090.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in \(\mathbb{R}^{2}\), Comm. Math. Phys., 275 (2007) 529–551.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Constantin, A. Tarfulea, V. Vicol, Absence of anomalous dissipation of energy in forced two dimensional fluid equations, ARMA 212 (2014), 875–903.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. De Lellis and L. Székelyhidi, Jr., The h-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.), 49 (2012) 347–375.

    Google Scholar 

  19. L. Escauriaza, G. Seregin, V. Sverak, \(L^{3,\infty }\)-solutions to the Navier-Stokes Equations and Backward Uniqueness. Uspekhi Mat. Nauk 58, 2 (2003) 3–44. English Translation: Russ. Math. Surv. 58, 2 (2003) 211–250.

    Google Scholar 

  20. G.L. Eyink and K.R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence, Rev. Modern Phys., 78 (2006) 87–135.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Foias, C. Guillopé, R. Temam, New apriori estimates for the Navier-Stokes equations in dimension 3, Comm. PDE 6 (3), (1981) 329–359.

    Article  MATH  Google Scholar 

  22. U. Frisch, Turbulence, the legacy of A.N. Kolmogorov, C.U.P., Cambridge (1995).

    Google Scholar 

  23. Y. Giga, P.-Y. Hsu and Y. Maekawa, A Liouville theorem for the planar Navier-Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion, Comm. in Partial Differential Equations, 39 (2014), 1906–1935.

    Article  MathSciNet  MATH  Google Scholar 

  24. Z. Grujic, Localization and geometric depletion of vortex-stretching in the 3D NSE, Comm. Math. Phys. 290 (2009), 861–870.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Kato, Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^{3}\), J. Funct. Anal. 9 (1972) 296–305.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on Nonlinear PDE Berkeley, California, Math. Sci. Res. Inst. Publ. 2 (1984), 85–98.

    Article  Google Scholar 

  27. J. Leray, Sur le mouvement d’un liquide visqeux emplissant l’espace, Acta Math. 63 (1934) 183–248.

    Article  MathSciNet  Google Scholar 

  28. N. Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Commun. Math. Phys, 270 (2007), 777–788.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Seregin, V. Sverak, Navier-Stokes equations with lower bounds on the pressure, ARMA 163 (1) (2002), 65–86.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Constantin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Constantin, P. (2016). Navier Stokes Equations: A Quick Reminder and a Few Remarks. In: Nash, Jr., J., Rassias, M. (eds) Open Problems in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-32162-2_6

Download citation

Publish with us

Policies and ethics