Skip to main content

Electrochemically Derived Oxide Nanoform-Based Gas Sensor Devices: Challenges and Prospects with MEMS Integration

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Since their invention, advents in structural evolution of semiconducting metal oxide-based chemical sensors relied much on the controllable surface to volume ratio of different nanoforms as the governing factor for sensing performance. Among the established synthesis techniques, electrochemical anodization has been found to be the promising one to develop the porous sensing layer with precise controllability and repeatability. The method is used either to create controlled porosity on an existing oxide surface or to grow porous oxide from corresponding metal. Recently, the technique has been successfully extended for development of sophisticated oxide structures like nanotubes, nanowires, and nanodots. The scope of the present overview concerns electrochemical anodization process, encompassing the effect of texture influencing factors, followed by the sensing performance of such films/nanoforms. Potentiality of different device structures (like resistive, Schottky, Metal–Insulator–Metal (MIM) and Metal–Insulator Semiconductor (MIS)) employing such electrochemically grown layer of oxide nanoforms, as the sensing element, have been elaborately explored. The sensor characteristics like response magnitude, response time and recovery time for the oxidizing and reducing chemical species have been critically discussed with particular emphasis on respective advantages and bottlenecks of the device structures. Finally, the chapter summarizes the salient features, prospects, and challenges of the electrochemically grown nanostructures for possible integration with MEMS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10:5469–5502

    Article  Google Scholar 

  2. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106

    Article  Google Scholar 

  3. Jeun J, Hong S (2010) CuO-loaded nano-porous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties. Sens Actuators B Chem 151:1–7

    Article  Google Scholar 

  4. Basu PK, Saha N, Jana SK, Saha H, Spetz AL, Basu S (2009) Schottky junction methane sensors using electrochemically grown nanocrystalline-nanoporous ZnO thin films. J. Sens 790(476). doi: 10.1155/2009/790476

    Google Scholar 

  5. Chen K, Xie K, Feng X, Wang S, Hu R, Gu H, Li Y (2012) An excellent room-temperature hydrogen sensor based on titania nanotube-arrays. Int J Hydrogen Energy 37:13602–13609

    Article  Google Scholar 

  6. Gönüllü Y, Rodríguez CGM, Saruhan B, Bayata F, Ürgen M (2011) Effect of doping at TiO2-nanotubular gas sensors. Sens Proc D2(4):551–553

    Google Scholar 

  7. Gönüllü Y, César G, Rodríguez M, Saruhan B, Ürgen M (2012) Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring. Sens Actuators B Chem 169:151–160

    Article  Google Scholar 

  8. Wu G, Zhang J, Wang X, Liao J, Xia H, Akbar SA, Li J, Lin S, Li X, Wang J (2012) Hierarchical structured TiO2 nano-tubes for formaldehyde sensing. Ceram Int 38:6341–6347

    Article  Google Scholar 

  9. Lin S, Li D, Wu J, Li X, Akbar SA (2011) A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens Actuators B Chem 156:505–509

    Article  Google Scholar 

  10. Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B Chem 93:338–344

    Article  Google Scholar 

  11. Şennik E, Çolak Z, Kılınç N, Öztürk ZZ (2010) Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. Int J Hydrogen Energy 35:4420–4427

    Article  Google Scholar 

  12. Perillo PM, Rodríguez DF (2012) The gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sens Actuators B Chem 171–172:639–643

    Article  Google Scholar 

  13. Kılınç N, Şennik E, Öztürk ZZ (2011) Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing. Thin Solid Films 520:953–958

    Article  Google Scholar 

  14. Hazra A, Bhattacharyya P (2014) Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron. IEEE Trans Electron Devices 61:3483–3489

    Article  Google Scholar 

  15. Hazra A, Dutta K, Bhowmik B, Chattopadhyay PP, Bhattacharyya P (2014) Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array. Appl Phys Lett 105:081604

    Article  Google Scholar 

  16. Hazra A, Bhowmik B, Dutta K, Chattopadhyay PP, Bhattacharyya P (2015) Stoichiometry, length, and wall thickness optimization of TiO2 nanotube array for efficient alcohol sensing. Appl Mater Interfaces 7:9336–9348

    Article  Google Scholar 

  17. Bhattacharyya P, Bhowmik B, Fecht H (2015) Operating temperature, repeatability, and selectivity of TiO2 nanotube-based acetone sensor: influence of Pd and Ni nanoparticle modifications. IEEE Trans Device Mater Reliab 15:376–383

    Article  Google Scholar 

  18. Bhowmik B, Fecht H, Bhattacharyya P (2015) Vertical mode gas sensing performance of TiO2 nanotube array by tuning of surface area and carrier transport length. IEEE Sens 15:5919–5926

    Article  Google Scholar 

  19. Dutta K, Chattopadhyay PP, Lu CW, Ho MS, Bhattacharyya P (2015) A highly sensitive BTX sensor based on electrochemically derived wall connected TiO2 nanotubes. Appl Surf Sci 354:353–361

    Article  Google Scholar 

  20. Galstyan V, Comini E, Baratto C, Fagila G, Brisotto M, Bontempi E, Sberveglien G (2012) Growth and gas sensing properties of rough ZnO nanowires. IMCS, pp 1623–1625

    Google Scholar 

  21. Zeng J, Hu M, Wang W, Chen H, Qin Y (2012) NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens Actuators B Chem 161:447–452

    Article  Google Scholar 

  22. Calavia R, Mozalev A, Vazquez R, Gracia I, Cané C, Ionescu R, Llobet E (2010) Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen. Sens Actuators B Chem 149:352–361

    Article  Google Scholar 

  23. Liu L, Li X, Wang X, Li S, Liao J, Tang Z, Wang J (2012) UV assisted chemical gas sensing of nanoporous TiO2 at low temperature. IMCS, pp 698–701

    Google Scholar 

  24. Hazra SK, Basu S (2006) High sensitivity and fast response hydrogen sensors based on electrochemically etched porous titania thin films. Sens Actuators B Chem 115:403–411

    Article  Google Scholar 

  25. Shimizu Y, Kuwano N, Hyodo T, Egashira M (2002) High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sens Actuators B Chem 83:195–201

    Article  Google Scholar 

  26. Shimizu Y, Hyodo T, Egashira M (2007) H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode. Sens Actuators B Chem 121:219–230

    Article  Google Scholar 

  27. Basu PK, Jana SK, Saha H, Basu S (2008) Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films. Sens Actuators B Chem 135:81–88

    Article  Google Scholar 

  28. Rani RA, Zoolfakar AS, Ou JZ, Field MR, Austin M, Kalantar-zadeh K (2013) Nanoporous Nb2O5 hydrogen gas sensor. Sens Actuators B Chem 176:149–156

    Article  Google Scholar 

  29. Hyodo T, Ohoka J, Shimizu Y, Egashira M (2006) Design of anodically oxidized Nb2O5 films as a diode-type H2 sensing material. Sens Actuators B Chem 117:359–366

    Article  Google Scholar 

  30. Mukherjee T, Hazra SK, Basu S (2007) Porous titania thin films grown by anodic oxidation for hydrogen sensors porous titania thin films grown by anodic oxidation. Mater Manuf Processes 21:247–251

    Article  Google Scholar 

  31. Iwanaga T, Hyodo T, Shimizu Y, Egashira M (2003) H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode. Sens Actuators B Chem 93: 519–525

    Article  Google Scholar 

  32. Miyazaki H, Hyodo T, Shimizu Y, Egashira M (2005) Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: effects of preparation and pretreatment conditions. Sens Actuators B Chem 108:467–472

    Article  Google Scholar 

  33. Sadek AZ, Partridge JG, McCulloch DG, Li YX, Yu XF, Wlodarski W, Kalantar-zadeh K (2009) Nanoporous TiO2 thin film based conductometric H2 sensor. Thin Solid Films 518:1294–1298

    Article  Google Scholar 

  34. Hu M, Zeng J, Wang W, Chen H, Qin Y (2011) Porous WO3 from anodized sputtered tungsten thin films for NO2 detection. Appl Surf Sci 258:1062–1068

    Article  Google Scholar 

  35. Varghese OK, Gong D, Dreschel WR, Ong KG, Grimes CA (2003) Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sens Actuators B Chem 94:27–35

    Article  Google Scholar 

  36. Basu PK, Bhattacharyya P, Saha N, Saha H, Basu S (2008) The superior performance of the electrochemically grown ZnO thin films as methane sensor. Sens Actuators B Chem 133: 357–363

    Article  Google Scholar 

  37. Bhattacharyya P, Basu PK, Basu S (2011) Methane detection by nano ZnO based MIM sensor devices. Sens Transducers 10:121–130

    Google Scholar 

  38. Basu PK, Bhattacharyya P, Saha N, Saha H, Basu S (2008) Methane sensing properties of platinum catalysed nano porous zinc oxide thin films derived by electrochemical anodization. Sens Lett 6:1–7

    Google Scholar 

  39. Macak JM, Schmuki P (2006) Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52:1258–1264

    Article  Google Scholar 

  40. Hazra A, Bhowmik B, Dutta K, Manjuladevi V, Gupta RK, Chattopadhyay PP, Bhattacharyya P (2014) Formation mechanism of anodically grown free-standing TiO2 nanotube array under the influence of mixed electrolytes. Sci Adv Mater 6:714–719

    Article  Google Scholar 

  41. Yang H, Pan C (2010) Diameter-controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property. J Alloys Compd 492:2009–2011

    Article  Google Scholar 

  42. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18

    Article  Google Scholar 

  43. Liu G, Wang K, Hoivik N, Jakobsen H (2012) Solar energy materials & solar cells progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38

    Article  Google Scholar 

  44. Choi J, Wehrspohn RB, Lee J, Gösele U (2004) Anodization of nanoimprinted titanium: a comparison with formation of porous alumina. Electrochim Acta 49:2645–2652

    Article  Google Scholar 

  45. Jackson MJ (2007) Surface engineered surgical tools and medical devices surface engineered surgical tools and medical devices. Springer, Berlin. e-ISBN: 978-0-387-27028-9

    Google Scholar 

  46. Anitha VC, Menon D, Nair SV, Prasanth R (2010) Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes. Electrochim Acta 55:3703–3713

    Article  Google Scholar 

  47. Sugiura T, Yoshida T, Minoura H (1998) Designing a TiO2 nano‐honeycomb structure using photoelectrochemical etching. Electrochem Solid State Lett 1:175–177

    Article  Google Scholar 

  48. Jun YK, Kim HS, Lee JH, Hong SH (2006) CO sensing performance in micro-arc oxidized TiO2 films for air quality control. Sens Actuators B Chem 120:69–73

    Article  Google Scholar 

  49. Tsuchiya H, Schmuki P (2005) Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem Commun 7:49–52

    Article  Google Scholar 

  50. Qiu X, Howe JY, Meyer HM, Tuncer E, Paranthaman MP (2011) Thermal stability of HfO2 nanotube arrays. Appl Surf Sci 257:4075–4081

    Article  Google Scholar 

  51. Fang D, Yu JG, Luo ZP, Liu S, Huang K, Xu W (2012) Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization. J Solid State Electrochem 16:1219–1228

    Article  Google Scholar 

  52. Hazra A, Dutta K, Bhowmik B, Manjuladevi V, Gupta RK, Chattopadhyay PP, Bhattacharyya P (2014) Structural and optical characterizations of electrochemically grown connected and free-standing TiO2 nanotube array. J Electron Mater 43:3229–3235

    Article  Google Scholar 

  53. Chen X, Schriver M, Suen T, Mao SS (2007) Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization. Thin Solid Films 515:8511–8514

    Article  Google Scholar 

  54. Allam NK, Shankar K, Grimes CA (2008) Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. J Mater Chem 18:2341–2348

    Article  Google Scholar 

  55. Kukkola J, Mäklin J, Halonen N, Kyllönen T, Tóth G, Szabó M, Shchukarev A, Mikkola JP, Jantunen H, Kordás K (2011) Gas sensors based on anodic tungsten oxide. Sens Actuators B Chem 153:293–300

    Article  Google Scholar 

  56. Sastry NV, Patel MC (2003) Densities, excess molar volumes, viscosities, speeds of sound, excess isentropic compressibilities, and relative permittivities for alkyl (methyl, ethyl, butyl, and isoamyl) acetates + glycols at different temperatures. J Chem Eng Data 48:1019–1027

    Article  Google Scholar 

  57. Bhattacharyya P (2014) Technological journey towards reliable microheater development for MEMS gas sensors: a review. IEEE Trans Device Mater Reliab 14:589–599

    Article  Google Scholar 

  58. Gurlo A, Ivanovskaya M, Bârsan N, Schweizer-Berberich M, Weimar U, Göpel W, Diéguez A (1997) Grain size control in nanocrystalline In2O3 semiconductor gas sensors. Sens Actuators B Chem 44:327–333

    Article  Google Scholar 

  59. Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172

    Article  Google Scholar 

  60. Simon I, Bârsan N, Bauer M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B Chem 73:1–26

    Article  Google Scholar 

  61. Sigmund P (1969) Theory of sputtering. Phys Rev 184:383–416

    Article  Google Scholar 

  62. Zhang G, Zhao J, Green MA (1998) Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF2/ZnS antireflection coatings and on the performance of high-efficiency silicon solar cells. Sol Energy Mater Sol Cells 51:393–400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhattacharyya, P., Dutta, K., Chattopadhyay, P.P. (2017). Electrochemically Derived Oxide Nanoform-Based Gas Sensor Devices: Challenges and Prospects with MEMS Integration. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics