Skip to main content

Magnetically Driven Microrobotics for Micromanipulation and Biomedical Applications

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Magnetic navigation is a promising technology for micromanipulation. This chapter firstly provides a brief review of magnetically driven microrobots developed for micromanipulation and biomedical applications such as medical surgery and drug delivery. Then a magnetically driven microrobotics system is introduced in detail to explain the procedure of developing a magnetic levitation stage. In order to achieve the persistent navigation of the microrobot in various environments, this chapter proposes a sensor switching mechanism that combines magnetic flux measurement based position determination and optical sensor based position detection. In addition, the concept of minimum magnetic potential energy point is used to predict the magnetic force on the microrobot when there is physical contact between the magnetized object and environments. As a further exploration of magnetic force determination mechanism, this chapter also describes the concept of remotely controlled drug delivery with contact force perception at the operator side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ji L, Xu L, Jin C (2013) Research on a low power consumption six-pole heteropolar hybrid magnetic bearing. IEEE Trans Magnet 49(8):4918–4926

    Article  Google Scholar 

  2. Chen S, Hsu C (2002) Optimal design of a three-pole active magnetic bearing. IEEE Trans Magnet 38(5):3458–3466

    Article  MathSciNet  Google Scholar 

  3. Perez-Diaz et al (2014) Superconducting noncontact device for precision positioning in cryogenic environments. IEEE/ASME Trans Mechatron 19(2):598–605

    Google Scholar 

  4. Schultz L et al (2005) Superconductively levitated transport system: the supratrans project. IEEE Trans Appl Supercon 15(2):2301–2305

    Article  Google Scholar 

  5. Simon MD, Geim AK (2000) Diamagnetic levitation: flying frogs and coating magnets. J Appl Phys 87(9):6200–6204

    Article  Google Scholar 

  6. Lyuksyutov I, Naugle G, Rathnayaka K (2004) On-chip manipulation of levitated femtodroplets. Appl Phys Lett 85(10):1817–1819

    Article  Google Scholar 

  7. Guo Y et al (2007) Design and analysis of a prototype linear motor driving system for HTS maglev transportation. IEEE Trans Appl Supercon 17(2):2087–2090

    Article  Google Scholar 

  8. Trumper D, Kim W, Williams M (1996) Design and analysis framework for linear permanent-magnet machines. IEEE Trans Ind Appl 32(2)

    Google Scholar 

  9. Covert E, Finston M, Vlajinac M, Stephens T (1973) Magnetic balance and suspension systems for use with wind tunnels. Prog Aerosp Sci 14:27–94

    Article  Google Scholar 

  10. Yu W, Li X (2014) A magnetic levitation system for advanced control education. In the International Federation of Automatic Control

    Google Scholar 

  11. Souza G et al (2010) Three dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5:291–296

    Article  Google Scholar 

  12. Liu J et al (2015) Automated vitrification of embryos. IEEE Robot Autom Mag

    Google Scholar 

  13. Karimirad F, Shirinzadeh B, Yan W, Fatikow S (2013) A vision-based methodology to dynamically track and describe cell deformation during cell micromanipulation. Int J Optomechatronics 7:33–45

    Article  Google Scholar 

  14. Avci E et al (2013) Toward high-speed automated micromanipulation. In: IEEE international conference on robotics and automation

    Book  Google Scholar 

  15. Wang D, Yang Q, Dong H (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. IEEE Trans Mechatron 18(1)

    Google Scholar 

  16. Xun X et al (2015) A novel piezo-driven microgripper with large jaw displacement. Microsyst Technol 21:931–942

    Article  Google Scholar 

  17. Alleyne A et al (2013) Motion control for magnetic micro-scale manipulation. In: European control conference

    Google Scholar 

  18. Mehrtash M, Khamesee MB (2013) Modeling and analysis of eddy-current damping effect in horizontal motions for a high-precision magnetic navigation platform. IEEE Trans Magnet 49(8):4801–4810

    Article  Google Scholar 

  19. Kim W, Trumper D, Lang J (1997) Modeling and vector control of a planar magnetic levitator. In: IEEE industry applications conference, pp 349–356

    Google Scholar 

  20. Chen M, Lin T, Hung S, Fu L (2012) Design and experiment of a macro-micro planar maglev position system. IEEE Trans Ind Electron 59(11):4128–4139

    Article  Google Scholar 

  21. Busch-Vishniac IJ (1990) Applications of magnetic levitation-based micro-automation in semiconductor manufacturing. IEEE Trans Semicond Manuf 3(3):109–115

    Article  Google Scholar 

  22. Mehrtash M, Tsuda N, Khamesee MB (2011) Bilateral macro-micro teleoperation using magnetic levitation. IEEE/ASME Trans Mechatron 16(3):459–469

    Article  Google Scholar 

  23. Peyer K, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5:1259–1272

    Article  Google Scholar 

  24. Martel S et al (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582

    Article  Google Scholar 

  25. Grady MS et al (1990) Nonlinear magnetic stereotaxis: three-dimensional in vivo remote magnetic manipulation of a small object in canine brain. Med Phys 17(3):405–415

    Article  Google Scholar 

  26. Kummer MP et al (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

    Article  Google Scholar 

  27. Carpi F, Pappone C (2009) Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system. IEEE Trans Biomed Eng 56(5):1482–1490

    Article  Google Scholar 

  28. Weizenecker J et al (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54(5):1–10

    Article  Google Scholar 

  29. Steager EB et al (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32(3):346–359

    Article  Google Scholar 

  30. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329

    Article  Google Scholar 

  31. Nakamura T, Khamesee MB (1997) A prototype mechanism for three-dimensional levitated movement of a small magnet. IEEE/ASME Trans Mechatron 2(1):41–50

    Article  Google Scholar 

  32. Shameli E, Craig DG, Khamesee MB (2006) Design and implementation of a magnetically suspended microrobotic pick-and-place system. J Appl Phys 99:08P509

    Google Scholar 

  33. Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mechatron 7(1):1–14

    Article  Google Scholar 

  34. Khamesee MB, Shameli E (2005) Regulation technique for a large gap magnetic field for 3D non-contact manipulation. Mechatronics 15(9):1073–1087

    Article  Google Scholar 

  35. Mehrtash M, Khamesee MB (2011) Design and implementation of LQG/LTR controller for a magnetic telemanipulation system- performance evaluation and energy saving. Microsyst Technol 17(5):1135–1143

    Article  Google Scholar 

  36. Islam SM (2014) Magnetic-based closed-loop control of paramagnetic microparticles using ultrasound feedback. In: IEEE international conference on robotics and automation (ICRA), pp 3807–3812

    Google Scholar 

  37. Mehrtash M, Khamesee MB Tsuda N, Chang J (2011) Motion Control of a magnetically levitated microrobot using magnetic flux measurement. Microsyst Technol 18(9):1417–1424

    Google Scholar 

  38. Zhang X, Mehrtash M, Khamesee MB (2015) Dual-axial motion control of a magnetic levitation system using hall-effect sensors. IEEE/ASME Trans Mechatron. doi:10.1109/TMECH.2015.2479404

    Google Scholar 

  39. Mehrtash M, Khamesee MB (2013) Micro-domain force estimation using hall-effect sensor for a magnetic microrobotic station. J Adv Mech Des Syst Manuf 7(1):2–14

    Google Scholar 

  40. Mehrtash M, Zhang X, Khamesee MB (2015) Bilateral magnetic micromanipulation using off-board force sensor. IEEE/ASME Trans Mechatron 20(6):3223–3231

    Article  Google Scholar 

  41. The Economist Magazine (April-May 2009), Science and technology section: look, no wires−a tiny, levitating robot takes to the air, p 85

    Google Scholar 

  42. Hosseini S, Mehrtash M, Khamesee MB (2011) Design, fabrication and control of a magnetic capsule robot for the human esophagus. J Microsyst Technol 17(5):1145–1152

    Article  Google Scholar 

  43. Gumprecht JD, Lueth TC, Khamesee MB (2013) Navigation of a robotic capsule endoscope with a novel ultrasound tracking system. Microsyst Technol 19:1415–1423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Behrad Khamesee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, X., Khamesee, M.B. (2017). Magnetically Driven Microrobotics for Micromanipulation and Biomedical Applications. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics