Skip to main content

Mechanical Characterization of MEMS

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

  • 3238 Accesses

Abstract

Characterization of microelectromechanical systems, MEMS structures is important for their reliability, specifically for life-sustaining applications. Due to size effect, testing must be done at microscale under the same conditions the components are utilized. Microtesting systems have been developed and used for metallic and nonmetallic MEMS components. Other methods including on-the-chip characterization have been developed and utilized. Details of development or utilization of various micro-characterization techniques are presented in this chapter. There are many issues related to mechanical properties, some of which are briefly described here. Modeling MEMS both computationally and mathematically are depicted along with examples. At the end, future trends in MEMS are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pryputniewicz RJ (2012) Current trends and future directions in MEMS. Exp Mech 52(3): 289–303

    Article  Google Scholar 

  2. Allameh SM, Lou J, Kavishe F, Buchheit T, Soboyejo WO (2004) An investigation of fatigue in LIGA Ni MEMS thin films. Mater Sci Eng A 371:256–266

    Article  Google Scholar 

  3. Miller SL, Lavigne G, Rodgers MS, Sniegowski JJ, Waters JP, Mcwhorter PJ (1997) Routes to failure in rotating MEMS devices experiencing sliding friction. In: Proceedings of the SPIE—The International Society for Optical Engineering, vol 3224, pp 24–30

    Google Scholar 

  4. Allameh SM, Shrotriya P, Butterwick A, Brown S, Soboyejo WO (2003) Surface topography evolution and fatigue fracture in polysilicon MEMS structures. J Microelectromech Syst 12:313–324. doi:10.1109/JMEMS.2003.809957

    Article  Google Scholar 

  5. Muhlstein CL et al (2001) High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air. Sens Actuators A Phys 94(3):177–188

    Article  Google Scholar 

  6. Brown SB, Van Arsdell W, Muhlstein CL (1997) Materials reliability in MEMS devices. Presented in proceedings of international solid state sensors and actuators conference (Transducers’97), IEEE, New York, vol 1, pp 591–593

    Google Scholar 

  7. Brown SB, Jansen E (1996) Reliability and long term stability of MEMS. Advanced applications of lasers in materials processing/broadband optical networks/smart pixels/optical MEMs and their applications. In: IEEE/LEOS 1996 summer topical meetings, Keystone, CO, 5–9 Aug 1996, pp 9–10. doi:10.1109/LEOSST.1996.540771

  8. Yu HH, Suo Z (2000) Stress-dependent surface reactions and implications for a stress measurement technique. J Appl Phys 87:1211–1218

    Article  Google Scholar 

  9. Liang J, Suo Z (2001) Stress-assisted reaction at a solid-fluid interface. Interface Sci 9:93–104

    Article  Google Scholar 

  10. Yang WH, Srolovitz DJ (1994) Surface morphology evolution in stressed solids: surface diffusion controlled crack initiation. J Mech Phys Solids 42(10):1551–1574

    Article  MathSciNet  MATH  Google Scholar 

  11. Tanner DM (2000) Reliability of surface micromachined microelectromechanical actuators. In: Proceedings of 22nd international conference on microelectronics. Proceedings, 2000, IEEE, Piscataway, NJ, pp 97–104. doi:10.1109/ICMEL.2000.840535

  12. Smith NF, Eaton WP, Tanner DM, Allen JJ (1999) Development of characterization tools for reliability testing of microelectromechanical system actuators. In: MEMS reliability for critical and space applications. Proceedings of SPIE—The International Society for Optical Engineering, vol 3880, pp 156–164

    Google Scholar 

  13. Tanner D, Miller W, Peterson K, Dugger M, Eaton W, Irwin L, Senft D, Smith N, Tangyunyong P, Miller S (1999) Frequency dependence of the lifetime of a surface micromachined microengine driving a load. Microelectron Reliab 39:401–414

    Article  Google Scholar 

  14. Tanner DM, Walraven JA, Helgesen K, Irwin LW, Brown F, Smith NF, Masters N (2000) MEMS reliability in shock environments. Presented in annual proceedings—reliability physics (symposium), IEEE, Piscataway, NJ, pp 129–138

    Google Scholar 

  15. Wagner U, Franz J, Schweiker M, Bernhard W, Muller-Fiedler R, Michel B, Paul O (2001) Mechanical reliability of MEMS-structures under shock load. Microelectron Reliab 41(9/10):1657–1662

    Article  Google Scholar 

  16. Miller SL, Rodgers MS, LaVigne G, Sniegowski JJ, Clews P, Tanner DM, Peterson KA (1998) Failure modes in surface micromachined microelectromechanical actuators. In: 1998 IEEE international reliability physics symposium proceedings, IRPS 1998, 31 Mar–2 Apr 1998, pp 17–25

    Google Scholar 

  17. Tanner DM, Walraven JA, Irwin LW, Dugger MT, Smith NF, Eaton WP, Miller WM, Miller SL (1999) Effect of humidity on the reliability of a surface micromachined microengine. Presented in annual proceedings—reliability physics (symposium), IEEE, Piscataway, NJ, pp 189–197. doi:10.1109/RELPHY.1999.761611

  18. Takashima K, Higo Y, Sugiura S, Shimojo M (2001) Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni-P amorphous alloy thin film. Mater Trans 42(1):68–73. doi:10.2320/matertrans.42.68

    Article  Google Scholar 

  19. Zhang GP, Takashima K, Shimojo M, Iligo Y (2000) Fatigue behavior of microsized austenitic stainless steel specimens. Mater Lett 57:1555–1560. doi:10.1016/S0167-577X(02)01023-6

    Article  Google Scholar 

  20. Tsuchiya T, Sakata J, Taga Y (1998) Tensile strength and fracture toughness of surface micromachined polycrystalline silicon thin films prepared under various conditions. In: Cammarata RC, Nastasi M, Busso EP, Oliver WC (eds) Presented in thin-films-stresses and mechanical properties VII. Symposium, 1998, Mater. Res. Soc., Warrendale, PA, pp 285–290. doi:10.1557/PROC-505-285

  21. Tanner DM, Walraven JA, Helgesen KS, Irwin LW, Gregory DL, Stake JR, Smith NF (2000) MEMS reliability in a vibration environment. Presented in annual proceedings—reliability physics (symposium), IEEE, Piscataway, NJ, pp 139–145. doi:10.1109/RELPHY.2000.843904

  22. White CD, Shea HR, Cameron KK, Pardo F, Bolle CA, Aksyuk VA, Arney S (2000) Electrical and environmental reliability characterization of surface-micromachined MEMS polysilicon test structures. In: Proceedings of the SPIE—The International Society for Optical Engineering, vol 4180, pp 91–95. doi:10.1117/12.395697

  23. Marxer C, Gretillat MA, De Rooij NF, Batting R, Anthametten O, Valk B, Vogel P (1997) Reliability considerations for electrostatic polysilicon actuators using as an example the REMO component. Sens Actuators 61(1–3):449–454. doi:10.1016/S0924-4247(97)80304-4

    Article  Google Scholar 

  24. Patton ST, Cowan WD, Zabinski JS (1999). Performance and reliability of a new MEMS electrostatic lateral output motor. Presented in annual proceedings-reliability physics (symposium), IEEE, Piscataway, NJ, pp 179–188. doi:10.1109/RELPHY.1999.761610

  25. Lafontan X, Pressecq F, Perez G, Dufaza C, Karam JM (2001) Physical and reliability issues in MEMS microrelays with gold contacts. In: Proceedings of the SPIE—The International Society for Optical Engineering, vol 4558, pp 11–21

    Google Scholar 

  26. Smith BK, Brown CD, Lavigne G, Sniegowski JJ (1998) Thin Teflon-like films for MEMS: film properties and reliability studies. In: Proceedings of the SPIE—The International Society for Optical Engineering, vol 3511, pp 114–125. doi:10.1117/12.324289

  27. Bahr DF, Merlino JC, Banerjee P, Yip CM, Bandyopadyay A (1999) Reliability and properties of PZT thin films for MEMS applications. In: Heuer AH, Jacobs SJ (eds) Presented in materials science of microelectromechanical systems (MEMS) devices, Mater. Res. Soc., Warrendale, PA, vol 546, pp 153–158. doi:10.1557/PROC-546-153

  28. Renaud M, Fujita T, Goedbloed M, de Nooijer C, van Schaijk R (2014) Improved mechanical reliability of MEMS piezoelectric vibration energy harvesters for automotive applications. J Micromech Microeng 25(10):568–571. doi:10.1109/MEMSYS.2014.6765704

    Google Scholar 

  29. Soboyejo WO, Allameh S, Gally B, Brown S, Freeman D, Evans AG (2000) Reliability of mechatronic silicon MEMS structures. In: Ume C (ed) Proceedings of the 7th mechatronics forum international conference, Elsevier, Atlanta, GA. Paper no. 41.03

    Google Scholar 

  30. Bhushan B (2001) Modern tribology handbook, vol 1. Principles of tribology; vol 2. Materials, coatings, and industrial applications. CRC, Boca Raton, FL

    Google Scholar 

  31. Dhennin J, Lellouchi D, Pressecq F (2015) How to evaluate the reliability of MEMS devices without standards. In: Proceedings of 2015 symposium on design, test, integration and packaging of MEMS/MOEMS, Montpellier, France, 27–30 Apr 2015, pp 254–257. doi:10.1109/DTIP.2015.7161015

  32. Pathak R, Joshi S (2009) Reliability modeling and optimization of MEMS elements in various devices using multi-scale concepts. In: Innovative technologies in intelligent systems and industrial applications, CITISIA, pp 332–337. doi:10.1109/CITISIA.2009.5224187

  33. Fang X-W, Huang Q-A, Tang J-Y (2004) Modeling of MEMS reliability in shock environments. In: Proceedings of the solid-state and integrated circuits technology, vol 2, pp 860–863. doi:10.1109/ICSICT.2004.1436643

  34. Maier-Schneider D, Maibach J, Obermeier E (1995) A new analytical solution for the load-deflection of square membranes. J Microelectromech Syst 4(4):238–241. doi:10.1109/84.475551

    Article  Google Scholar 

  35. Tanner DM, Smith NF, Irwin LW, Eaton WP, Helgesen K, Clement JJ, Miller WM, Walraven JA, Peterson KA, Tangyunyong P, Dugger MT, Miller SL (2000) MEMS reliability: infrastructure, test structures, experiments, and failure modes. In: Sandia National Laboratories, report, SAND2000-0091, unlimited release, pp 1–171. http://www.sandia.gov/mems/_assets/documents/bibliography/3_13MEMS.pdf

  36. Que L, Park J, Gianchandani Y (1999) Bent-beam electro-thermal actuators for high force applications. In: IEEE international conference on micro electro mechanical systems, Orlando, FL, Jan 1999, pp 552–557

    Google Scholar 

  37. Lee T, Seo Y, Whang K, Choi D (2006) Study on the lateral actuator with actuation range amplifying structure. Key Eng Mater 326–328:289–292

    Article  Google Scholar 

  38. Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1):7–17

    Article  Google Scholar 

  39. Gee D, Currano L (2007) Fabrication and testing of a novel MEMS rotational thermal actuator. US Army Research Lab., Adelphi, MD report no. ARL-TR-4315, Nov 2007, pp 1–22

    Google Scholar 

  40. Sharpe WN Jr, McAleavey A (1998) Tensile properties of LIGA nickel. In: Proceedings of SPIE—The International Society for Optical Engineering, vol 3512, pp 130–137

    Google Scholar 

  41. Yang Y, Allameh SM, Lou J, Imasogie B, Boyce BL, Soboyejo WO (2007) Fatigue of LIGA Ni micro-electro-mechanical systems thin films. Metall Mater Trans A 38:2340–2348

    Article  Google Scholar 

  42. Wardlow J, Allameh SM (2015) On the micromechanical characterization of metallic MEMS by a hybrid microtester. In: Proceedings of 2015 ASME international mechanical engineering congress and exposition, Houston, TX, 13–19 Nov 2015

    Google Scholar 

  43. Zhou J, Allameh SM, Soboyejo WO (2005) Microscale testing of the strut in open cell aluminum foams. J Mater Sci 40:429–439

    Article  Google Scholar 

  44. Arsène MA, Savastano H Jr, Allameh SM, Ghavami K, Soboyejo WO (2003) Cementitious composites reinforced with vegetable fibers. In: Proceedings of IAC NOCMAT 2003, first inter American conference on non-conventional materials and technologies in the eco-construction and infrastructure-IAC NOCMAT 2003, João Pessoa, Brazil

    Google Scholar 

  45. Allameh SM, Sadat Hossieny M, Rajai M (2005) Development of microtesting systems: I. Tensile testing of metallic microsamples. In: Proceedings of 2005 ASEE annual meeting and conference, Portland, OR, No. 2005-1010

    Google Scholar 

  46. Allameh SM, Gally B, Brown S, Soboyejo WO (2001) Surface topology and fatigue in Si MEMS structures. In: Muhlstein C, Brown S (eds) Mechanical properties of structural films, STP 1413. American Society for Testing and Materials, West Conshohocken, PA, pp 3–16

    Chapter  Google Scholar 

  47. Freeman DM, Aranyosi AJ, Gordon MJ, Hong SS (1998) Multidimensional motion analysis of MEMS using computer microvision. In: Proceedings of the solid-state sensor and actuator workshop, Hilton Head Island, SC, June 1998, pp 150–155

    Google Scholar 

  48. Quentin Davis C, Freeman DM (1998) Using a light microscope to measure motions with nanometer accuracy. Opt Eng 37:1299–1304

    Article  Google Scholar 

  49. Ritchie RO (1988) Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater Sci Eng A A103:15–28

    Article  Google Scholar 

  50. Shrotriya P, Allameh S, Butterwick A, Brown S, Soboyejo WO (2002) Mechanisms of fatigue in polysilicon MEMS structures. Mater Res Soc Symp Proc 687(B2.3):29–34

    Google Scholar 

  51. Allameh SM, Gally B, Brown S, Soboyejo WO (2001) On the evolution of surface morphology of polysilicon MEMS structures during fatigue. In: Kahn H et al (eds) MRS fall meeting, symposium EE: materials science of microelectromechanical system (MEMS) devices III, Boston, MA, 2000, MRS proceeding, paper, vol 657, pp EE2.3.1–EE2.3.6

    Google Scholar 

  52. Li X, Bhushan B, Takashima K, Baek CW, Kim YK (1997) Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1–4):481–494

    Google Scholar 

  53. Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63:574–581

    Article  Google Scholar 

  54. Allameh SM, Suo Z, Soboyejo W (2007) Creep of Al underlayer determined by channel cracking of topical Si3N4 film. J Mater Manuf Process 22:170–174

    Article  Google Scholar 

  55. Namazu T, Morikaku T, Akamine H, Fujii T, Kuroda K, Takami Y (2015) Mechanical reliability of FIB-fabricated WC–Co cemented carbide nanowires evaluated by MEMS tensile testing. Eng Fract Mech 150:126–134. doi:10.1016/j.engfracmech.2015.07.007

    Article  Google Scholar 

  56. Muldavin JB, Rebeiz GM (2001) Nonlinear electro-mechanical modeling of MEMS switches. In: Proceedings of conference on microwave symposium digest, 2001 IEEE MTT-S international, 20–24 May 2001, Phoenix, AZ, vol 3, pp 2119–2122. doi:10.1109/MWSYM.2001.967332

  57. Shen MC, Nichols J, Garson C, Mills I, Matar M, Fewell J, Pant K, Prabhakarpandian B (2015) Synthetic tumor networks for screening drug delivery systems. J Control Release 201:49–55. doi:10.1016/j.jconrel.2015.01.018. CFDRC (2015) CFD-ACE + Multiphysics software,http://www.cfdrc.com

  58. Song H, Wang Y, Garson C, Pant K (2015) Concurrent DNA preconcentration and separation in bipolar electrode-based microfluidic device. Anal Methods 7:1273–1279. doi:10.1039/C4AY01858C

    Article  Google Scholar 

  59. Zhang H, Xu D, Zhang X, Chen Q, Xie H, Li S (2015) Model-based angular scan error correction of an electrothermally-actuated MEMS mirror. Sensors 15:30991–31004. doi:10.3390/s151229840

    Article  Google Scholar 

  60. Technavio Research (2016) Global MEMS pressure sensor market to exceed USD 4 billion by 2020. Business Wire, London, Accession Number: bizwire.c66356480. 19 Jan 2016

    Google Scholar 

  61. Mounier E, Troadec C, Girardin G, de Charentenay Y (2015) Status of MEMS industry. Yole Development Report (May 2015), pp 40–61. Cited in Market & Technology on i-Micronews.http://www.i-micronews.com/component/hikashop/product/status-of-the-mems-industry-2015.html

  62. Ventrelli L, Marsilio Strambini L, Barillaro G (2015) Microneedles for transdermal biosensing: current picture and future direction. Adv Healthc Mater 4(17):2606–2640. doi:10.1002/adhm.201500450

    Article  Google Scholar 

  63. Akhtar N (2014) Microneedles: an innovative approach to transdermal delivery—a review. Int J Pharm Pharm Sci 6(4):18–25

    Google Scholar 

Download references

Acknowledgement

The author is grateful to Hadi Allameh for his careful reviewing of the manuscript and for providing helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed M. Allameh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Allameh, S.M. (2017). Mechanical Characterization of MEMS. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics