Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 61))

Abstract

Variable Structure Control Systems (VSCS) are a class of systems where the control law, as a function of the system state, is deliberately changed (from one structure to another) according to some predefined rules: for example a relay system . During a sliding mode the closed-loop system response is constrained to evolve along a sliding surface in the state-space to an equilibrium point. In sliding mode schemes, a switching function typically dictates which structure of control law is to be used at a particular time instant, depending on the position of the state from the sliding surface .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative approach to smoothing the discontinuity which leads to chattering is to use a higher order sliding mode control approach [2]. Now the sliding motion takes place on the constraint set \(\sigma =\dot{\sigma }=\cdots =\sigma ^{r-1}=0\) and is called an rth order sliding mode. Furthermore if it is possible to steer \(\sigma \) to zero using the discontinuous control based on \(\dot{u}(t)\), then the actual control signal u(t) will be continuous and the unwanted chattering effects can be alleviated [3].

  2. 2.

    This is a well-known ‘classical’ state-space technique: for details see for example [4].

References

  1. Edwards, C., Spurgeon, S.K.: Sliding Mode Control, Theory and Applications. Taylor and Francis, London (1998)

    MATH  Google Scholar 

  2. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhauser, New York (2013)

    Google Scholar 

  3. Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall International Edition, Upper Saddle River (1989)

    Google Scholar 

  5. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  6. Utkin, V.: Sliding mode control. In: Sabanovic, A., Fridman, L.M., Spurgeon, S.K. (eds.) Variable Structure Systems: From Principles to Implementation. IEE Control Series 66, pp. 3–17. IEE, London (2004)

    Chapter  Google Scholar 

  7. Utkin, V.: Variable structure systems with sliding mode. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Matthews, G.P., DeCarlo, R.A.: Decentralized tracking for a class of interconnected nonlinear systems using variable structure control. Automatica 24(2), 187–193 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th IEEE Conference on Decision and Control (1996)

    Google Scholar 

  10. Wang, J., Lee, T., Juang, Y.: New methods to design an integral variable structure controller. IEEE Trans. Autom. Control 41(1), 140–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, W., Xu, J.: Nonlinear integral type sliding surface for both matched and unmatched uncertain systems. IEEE Trans. Autom. Control 49(8), 1355–1360 (2004)

    Article  MathSciNet  Google Scholar 

  12. Xu, J., Pan, Y., Lee, T.: Analysis and design of integral sliding mode control based on Lyapunov’s direct method. In: Proceedings of the American Control Conference (2003)

    Google Scholar 

  13. Castanos, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 51(5), 853–858 (2006)

    Article  MathSciNet  Google Scholar 

  14. Fridman, L., Poznyak, A., Bejarano, F.J.: Robust LQ Output Control: Integral Sliding Mode Approach. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  15. Burton, J.A., Zinober, A.S.: Continuous approximation of variable structure control. Int. J. Syst. Sci. 17(6), 875–885 (1986)

    Article  MATH  Google Scholar 

  16. Wells, S.R., Hess, R.A.: Multi-input/multi-output sliding mode control for a tailless fighter aircraft. J. Guid., Control, Dyn. 26(3), 463–473 (2003)

    Article  Google Scholar 

  17. Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid., Control Dyn. 26, 452–462 (2003)

    Article  Google Scholar 

  18. Vetter, T.K., Wells, S.R., Hess, R.A.: Designing for damage-robust flight control design using sliding mode techniques. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 217, 245–261 (2003)

    Article  Google Scholar 

  19. Shtessel, Y., Buffington, J., Banda, S.: Tailless aircraft flight control using multiple time scale re-configurable sliding modes. IEEE Trans. Control Syst. Technol. 10, 288–296 (2002)

    Article  Google Scholar 

  20. Shin, D., Moon, G., Kim, Y.: Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 219, 321–328 (2005)

    Article  Google Scholar 

  21. Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault Tolerant Control Using Sliding Modes. Advances in Industrial Control Series. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  22. Ríos, H., Kamal, S., Fridman, L.M., Zolghadri, A.: Fault tolerant control allocation via continuous integral sliding-modes: a HOSM-observer approach. Automatica 51, 318–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Tariq Hamayun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamayun, M.T., Edwards, C., Alwi, H. (2016). Integral Sliding Mode Control. In: Fault Tolerant Control Schemes Using Integral Sliding Modes. Studies in Systems, Decision and Control, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-32238-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32238-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32236-0

  • Online ISBN: 978-3-319-32238-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics