Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 64))

  • 5370 Accesses

Abstract

Linear systems of equations resulting from finite element discretizations of partial differential equations are typically large, sparse, and ill-conditioned. Their efficient numerical solution exploits properties of the underlying continuous problem or a sequence of discretizations. The chapter discusses multigrid, domain decomposition, and preconditioning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fundamental contributions to the development of multigrid methods, preconditioning of finite element matrices, and domain decomposition methods are the articles [2–4, 6, 9, 12, 18]. Specialized textbooks on the subjects are the references [7, 10, 11, 13, 15, 16]. The historical development of domain decomposition methods is recapitulated in [8], and the survey article [17] discusses various aspects of preconditioning techniques. Chapters on iterative solution methods are contained in the textbooks [1, 5, 14].

References

  1. Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007). URL http://dx.doi.org/10.1017/CBO9780511618635

  2. Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including the V -cycle. SIAM J. Numer. Anal. 20 (5), 967–975 (1983). URL http://dx.doi.org/10.1137/0720066

    Google Scholar 

  3. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47 (175), 103–134 (1986). URL http://dx.doi.org/10.2307/2008084

    Google Scholar 

  4. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comp. 55 (191), 1–22 (1990). URL http://dx.doi.org/10.2307/2008789

    Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). URL http://dx.doi.org/10.1007/978-0-387-75934-0

    Google Scholar 

  6. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63 (3), 315–344 (1992). URL http://dx.doi.org/10.1007/BF01385864

    Google Scholar 

  7. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford (2014). URL http://dx.doi.org/10.1093/acprof:oso/9780199678792.001.0001

  8. Gander, M.J.: Schwarz methods over the course of time. Electron. Trans. Numer. Anal. 31, 228–255 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70 (2), 163–180 (1995). URL http://dx.doi.org/10.1007/s002110050115

    Google Scholar 

  10. Hackbusch, W.: Multigrid methods and applications. Springer Series in Computational Mathematics, vol. 4. Springer, Berlin (1985). URL http://dx.doi.org/10.1007/978-3-662-02427-0

    Google Scholar 

  11. Hackbusch, W.: Iterative solution of large sparse systems of equations. Applied Mathematical Sciences, vol. 95. Springer, New York (1994). URL http://dx.doi.org/10.1007/978-1-4612-4288-8

    Google Scholar 

  12. Lions, P.L.: On the Schwarz alternating method. I. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), pp. 1–42. SIAM, Philadelphia, PA (1988)

    Google Scholar 

  13. Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1999)

    MATH  Google Scholar 

  14. Rannacher, R.: Numerische Mathematik 2 (Numerik partieller Differentialgleichungen) (2008). URL http://numerik.iwr.uni-heidelberg.de/~lehre/notes/. Lecture Notes, University of Heidelberg, Germany

  15. Saad, Y.: Iterative methods for sparse linear systems, second edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (2003). URL http://dx.doi.org/10.1137/1.9780898718003

  16. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

    Google Scholar 

  17. Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 599–659. Springer, Berlin (2009). URL http://dx.doi.org/10.1007/978-3-642-03413-8_14

    Google Scholar 

  18. Yserentant, H.: On the multilevel splitting of finite element spaces. Numer. Math. 49 (4), 379–412 (1986). URL http://dx.doi.org/10.1007/BF01389538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartels, S. (2016). Iterative Solution Methods. In: Numerical Approximation of Partial Differential Equations. Texts in Applied Mathematics, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-32354-1_5

Download citation

Publish with us

Policies and ethics