Skip to main content

Integral Process Modelling and Simulation for Solid-Particle-Forming Spray Processes

  • Chapter
  • First Online:
Process-Spray

Abstract

Solid particles are formulated in spray processes by atomization of a slurry or melt and successive solidification or drying of the droplets. The inter-correlations between the spray process conditions (atomizer types, raw material properties, operation conditions, etc.) and the powder product properties (particle size, morphology, structure, etc.) in spray processing of solid particles through integral process modelling and simulation are to be derived. A multiphase CFD-Continuum Model integrates different sub-process models dealing with various nozzle arrangements, liquid atomization, droplet spray, and particle consolidation phenomena. For quantitative descriptions of particle–droplet interactions in spray processes, particle–droplet collision model, and particle penetration model are developed based on numerical simulations. The integrative models are validated based on melt atomization process (two-phase) and spray process for composite-particle production (three-phase). The integral process model may be inverted to derive proper feed and process conditions for tailored particle production in a recursive design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Cube width [m]

a, b :

Constants [–]

A p :

Projection area [m2]

B :

Impact number [–]

Bo :

Bond number [–]

C :

Collection efficiency [–]

c :

Speed of sound [m/s]

C b, C d, C f, C k :

Coefficients in TAB model [–]

C D :

Liquid discharge coefficient [–]

C d :

Drag coefficient [–]

Co:

Courant number [–]

C p :

Specific heat capacity at constant pressure [J/kg K]

C v :

Specific heat capacity at constant volume

d or D :

Diameter [m]

d 50,3; d 32 :

Mass median diameter, MMD [m]; Sauter mean diameter SMD [m]

E k :

Kinetic energy [J]

f :

Volume fraction [–]

F b :

Buoyancy force [N]

F d :

Viscous drag force [N]

F g :

Gravitational force [N]

F s :

Surface tension force [N]

g :

Gravitational acceleration [m/s2]

h :

Film thickness [m]

k :

Turbulence kinetic energy [m2/s2]

K br, k 1, k 2 :

Coefficients in ETAB model [–]

K v :

Coefficient [–]

L :

Length [m]

m :

Mass [kg]

M :

Molecular weight [kg/mol]

\( \overset{.}{M} \) :

Mass flow rate [kg/s]

n :

Unit normal vector [–]

N p :

Particle number concentration [m−3]

Nu :

Nusselt number [–]

Oh :

Ohnesorge number [–]

p :

Pressure [Pa]; penetration depth [m]

Pr :

Prandtl number [–]

Q :

Particle–droplet collision number [–]

r :

Radius [m]

R :

Ideal gas constant [J/mol K]

Re :

Reynolds number [–]

St :

Stokes number [–]

t :

Time [s]

T :

Temperature [K]

U :

Velocity [m/s]

V :

Volume [m−3]

We :

Weber number [–]

x :

Droplet deformation [m]

X :

Area ratio of air core at nozzle exit to nozzle exit section

x, y, z :

Cartesian coordinates [m]

y :

Dimensionless droplet deformation [–]

α :

Spray angle [°]

δ :

Particle/droplet size ratio [–]

Δ :

Cell size [m]

ΔH f :

Latent heat [J/kg]

η :

Collision efficiency [–]

θ :

Solid–liquid contact angle [°]

κ :

Specific capacity ratio C p/C v [–]; interface curvature [m−1]

λ :

Thermal conductivity [W/m K]

μ :

Dynamic viscosity [Pa s]

μ, σ :

Coefficients in root and log normal distribution

ρ :

Mass density [kg/m3]

σ :

Surface tension [N/m]

τ E :

Eddy life time [s]

τ I :

Particle–eddy interaction time [s]

τ r :

Residence time in eddy [s]

φ :

Penetration angle [°]

ω :

Specific turbulence dissipation rate [s−1]; frequency [s−1]

References

  1. OpenFOAM® open source CFD toolbox. http://www.openfoam.com

  2. Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modelling surface tension. Journal of Computational Physics, 100(2), 335–354.

    Article  Google Scholar 

  3. Jasak, H., & Gosman, A. D. (2000). Automatic resolution control for the finite volume method. Numerical Heat Transfer, Part B, 38(3), 237–271.

    Article  Google Scholar 

  4. Uhlenwinkel, U., & Achelis, L. (2011). Erzeugung von Kompositpartikeln durch in-situ Injektion von Feststoffpartikeln während des Lamellenzerfalls. In Teilprojekt C5 im SPP Prozess-Spray, 2009-2011.

    Google Scholar 

  5. Li, X.-G. (2014). Modeling and simulation of the gas-atomization process of metal melts for metal-matrix-composite production. Dissertation, University of Bremen, Shaker Verlag. ISBN 978-3-8440-3209-3.

    Google Scholar 

  6. Markus, S., & Fritsching, U. (2006). Discrete breakup modeling for melt sprays. International Journal of Powder Metallurgy, 42(4), 23–32.

    Google Scholar 

  7. Suyari, M., & Lefebvre, A. H. (1986). Film thickness measurements in a simplex swirl atomizer. Journal of Propulsion and Power, 2(6), 528–533.

    Article  Google Scholar 

  8. Eslamian, M., & Ashgriz, N. (2011). Swirl, T-Jet and vibrating-mesh atomizers. In N. Ashgriz (Ed.), Handbook of atomization and sprays (pp. 755–773). New York: Springer. ISBN 978-1-4419-7263-7.

    Chapter  Google Scholar 

  9. Achelis, L. (2009). Kombinierte Drall-Druck-Gas-Zerstäubung von Metallschmelzen. Dissertation, Univ Bremen, Shaker Verlag. ISBN 978-3-8322-8012-3.

    Google Scholar 

  10. Lozano, A., Barreras, F., Hauke, G., & Dopazo, C. (2001). Longitudinal instabilities in an air-blasted liquid sheet. Journal of Fluid Mechanics, 437, 143–173.

    Article  Google Scholar 

  11. Park, J., Huh, K. Y., Li, X. G., & Renksizbulut, M. (2004). Experimental investigation on cellular breakup of a planar liquid sheet from an air-blast nozzle. Physics of Fluids, 16(3), 625–632.

    Article  Google Scholar 

  12. Wahono, S., Honnery, D., Soria, J., & Ghojel, J. (2008). High-speed visualisation of primary breakup of an annular liquid sheet. Experiments in Fluids, 44(3), 451–459.

    Article  Google Scholar 

  13. Achelis, L., Sulatycki, K., Uhlenwinkel, V., & Mädler, L. (2010). Lamellenzerfall von Metallschmelzen im Düsenbereich eines Druck-Gas-Zerstäubers zur Erzeugung von Kompositpartikeln. In Spray, 3-5 May 2010, Heidelberg, Germany.

    Google Scholar 

  14. Pilch, M., & Erdmann, C. A. (1987). Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow, 13, 741–757.

    Article  Google Scholar 

  15. Faeth, G. M., Hsiang, L. P., & Wu, P. K. (1995). Structure and breakup properties of spray. International Journal of Multiphase Flow, 21(Suppl), 99–127.

    Article  Google Scholar 

  16. Chryssakis, C., & Assanis, D. N. (2008). A unified fuel spray breakup model for internal combustion engine applications. Atomization and Sprays, 18, 1–52.

    Article  Google Scholar 

  17. Guildenbecher, D. R., Lopez-Rivera, C., & Sojka, P. E. (2009). Secondary atomization. Experiments in Fluids, 46(3), 371–402.

    Article  Google Scholar 

  18. Schmehl, R. (2003). Modeling droplet breakup in complex two-phase flows. In 9th International Conference on Liquid Atomization and Spray Systems ICLASS, 13-17 July 2003, Sorrento, Italy.

    Google Scholar 

  19. Schmehl, R. (2000). CFD analysis of fuel atomization, secondary droplet breakup and spray dispersion in the premix duct of a LPP combustor. In 8th International Conference on Liquid Atomization and Spray Systems ICLASS, 16-20 July 2000, Pasadena, CA, USA.

    Google Scholar 

  20. Zeoli, N., & Gu, S. (2006). Numerical modelling of droplet breakup for gas atomisation. Computational Materials Science, 38, 282–292.

    Article  Google Scholar 

  21. O’Rourke, P. J., Amsden, A. A. (1987). The TAB method for numerical calculation of spray droplet breakup (SAE Technical Paper 872089).

    Google Scholar 

  22. Tanner, F. X. (1997). Liquid jet atomization and droplet breakup modeling of non-evaporating diesel fuel sprays (SAE Technical Paper 970050).

    Google Scholar 

  23. Uhlenwinkel, V., Achelis, L., Sulatycki, K., Mädler, L. New approach to generate composite particles. In PMTEC 2010, 27-30 June 2010, Fort Lauderdale, USA.

    Google Scholar 

  24. Rao, K. P., & Mehrotra, S.P. (1980). Effect of process variables on atomization of metals and alloys. In H. H. Hausner, H. W. Antes, & G. D. Smith (Eds.), Modern developments in powder metallurgy, principles and processes (pp. 113–130). Princeton, NJ: MPIF and APMI International.

    Google Scholar 

  25. Lubanska, H. (1970). Correlation of spray ring data for gas atomization of liquid droplets. Journal of Metals, 2, 45–49.

    Google Scholar 

  26. Heck, U. (1998). Zur Zerstäubung in Freifalldüsen. Dissertation, University of Bremen.

    Google Scholar 

  27. Uhlenwinkel, V. (1992). Zum Ausbreitungsverhalten der Partikeln bei der Sprühkompaktierung von Metallen. Dissertation, University of Bremen.

    Google Scholar 

  28. Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., & Srivastava, V. (2004). Atomization process for metal powder. Materials Science and Engineering A, 383, 1–6.

    Article  Google Scholar 

  29. Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Chemical Engineering Progress, 48(3), 141–173.

    Google Scholar 

  30. Wu, Y., & Lavernia, E. J. (1992). Interaction mechanisms between ceramic particles and atomized metallic droplets. Metallurgical Transactions A, 23(10), 2923–2937.

    Article  Google Scholar 

  31. Eslamian, M., Rak, J., & Ashgriz, N. (2008). Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization. Powder Technology, 184, 11–20.

    Article  Google Scholar 

  32. Lim, K. S., Lee, S. H., & Park, H. S. (2006). Prediction for particle removal efficiency of a reverse jet scrubber. Journal of Aerosol Science, 37(12), 1826–1839.

    Article  Google Scholar 

  33. Schuch, G., & Löffler, F. (1978). Über die Abscheidewahrscheinlichkeit von Feststoffpartikeln an Tropfen in einer Gasströmung durch Trägheitseffekte. Verfahrenstechnik, 12(5), 302–306.

    Google Scholar 

  34. Ho, C. A. (2004). Modellierung der Partikelagglomeration im Rahmen des Euler/Lagrange-Verfahrens und Anwendung zur Berechnung der Staubabscheidung im Zyklon. Dissertation, Martin-Luther-Universität.

    Google Scholar 

  35. Taneda, S. (1956). Experimental investigation of the wake behind a sphere at low Reynolds numbers. Journal of the Physical Society of Japan, 11(10), 1104–1108.

    Article  Google Scholar 

  36. Johnson, T. A., & Patel, V. C. (1999). Flow past a sphere up to a Reynolds number of 300. Journal of Fluid Mechanics, 378(1), 19–70.

    Article  Google Scholar 

  37. Magarvy, R. H., & Bishop, R. L. (1961). Transition ranges for three-dimensional wakes. Canadian Journal of Physics, 39(10), 1418–1422.

    Article  Google Scholar 

  38. Majagi, S. I., Ranganathan, K., Lawley, A., & Apelian, D. (1992). Spray forming of metal matrix composites. In E. J. Lavernia & M. Gungor (Eds.), Microstructural design by solidification processing (pp. 139–149). Warrendale, PA: The Minerals, Metals & Materials Society. ISBN 0-8733-9193-4.

    Google Scholar 

  39. Wu, Y., Zhang, J., & Lavernia, E. J. (1994). Modeling of the incorporation of ceramic particulates in metallic droplets during spray atomization and co-injection. Metallurgical and Materials Transactions B, 25(1), 135–147.

    Article  Google Scholar 

  40. Hoeven, M. J. (2008). Particle-droplet collisions in spray drying. PhD Thesis, University of Queensland, Australia.

    Google Scholar 

  41. Li, B., & Lavernia, E. J. (2000). Particulate penetration into solid droplets. Metallurgical and Materials Transactions A, 31(2), 387–396.

    Article  Google Scholar 

  42. Ekedahl, E. (2008). 6-DOF VOF-solver without damping in OpenFOAM. PhD course in CFD with OpenSource software.

    Google Scholar 

  43. Jasak, H., & Tukovic, Z. (2006). Automatic mesh motion for the unstructured finite volume method. Transactions of FAMENA, 30(2), 1–18.

    Google Scholar 

  44. Menon, S. (2011). A numerical study of droplet formation and behaviour using interface tracking methods. PhD Thesis, University of Massachusetts Amherst, USA.

    Google Scholar 

  45. Marston, J. O., Vakarelski, I. U., & Thoroddsen, S. T. (2011). Bubble entrapment during sphere impact onto quiescent liquid surfaces. Journal of Fluid Mechanics, 680, 660–670.

    Article  Google Scholar 

  46. Thoroddsen, S. T., Thoraval, M. J., Takehara, K., & Etoh, T. G. (2012). Micro-bubble morphologies following drop impacts onto a pool surface. Journal of Fluid Mechanics, 708, 469–479.

    Article  Google Scholar 

  47. Li, X.-G., & Fritsching, U. (2011). Numerical investigation of binary droplet collisions in all relevant collision regimes. Journal of Computational Multiphase Flows, 3(4), 207–224.

    Article  Google Scholar 

  48. Verezub, O., Kaptay, G., Matsushita, T., & Mukai, K. (2005). Penetration dynamics of solid particles into liquids high-speed experimental results and modelling. Materials Science Forum, 473–474, 429–434.

    Article  Google Scholar 

  49. Nikolopoulos, P., Agathopoulos, S., Angelopoulos, G. N., Naoumidis, A., & Grübmeier, H. (1992). Wettability and interfacial energies in SiC-liquid metal systems. Journal of Materials Science, 27(1), 139–145.

    Article  Google Scholar 

  50. Eustathopoulos, N., Nicholas, M. G., & Drevet, B. (1999). Wettability at high temperatures. Oxford: Elsevier. ISBN 978-0-08-042146-9.

    Google Scholar 

  51. Frage, N., Froumin, N., & Dariel, M. P. (2002). Wetting of TiC by non-reactive liquid metals. Acta Materialia, 50(2), 237–245.

    Article  Google Scholar 

  52. Li, X.-G., Heisterüber, L., Achelis, L., Uhlenwinkel, V., & Fritsching, U. (2011). Spray process modeling in metal-matrix-composite powder production. Atomization and Sprays, 21(11), 933–948.

    Article  Google Scholar 

  53. Chen, J. Y., & Fan, Z. (2002). Modelling of rheological behaviour of semisolid metal slurries, part 1-theory. Materials Science and Technology, 18(3), 237–242.

    Article  Google Scholar 

  54. Zhang, J., Wu, Y., & Lavernia, E. J. (1994). Kinetics of ceramic particulate penetration into spray atomized metallic droplet at variable penetration depth. Acta Metallurgica et Materialia, 42(9), 2955–2971.

    Article  Google Scholar 

  55. Fritsching U., (2004) Spray Simulation-Modeling and Numerical Simulation of Sprayforming Metals, Cambridge University Press, New York, ISBN 0-521-03777-8.

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the DFG (Deutsche Forschungsgemeinschaft) for the financial support of this research within the SPP 1423 “Prozess–Spray.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Fritsching .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, XG., Sander, S., Fritsching, U. (2016). Integral Process Modelling and Simulation for Solid-Particle-Forming Spray Processes. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_18

Download citation

Publish with us

Policies and ethics