Skip to main content

Vitamin D Metabolism in Normal and Chronic Kidney Disease States

  • Chapter
  • First Online:
Vitamin D in Chronic Kidney Disease

Abstract

Vitamin D is a prohormone synthesized in the skin from the precursor molecule 7-dehydrocholesterol by the action of sunlight. It is found in low amounts in food, with fortified dairy and fish oils being the most abundant source. Vitamin D undergoes an important 2-step bio-activation process required to produce the active metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D). The bio-activation process comprises the synthesis of 25-hydroxyvitamin D in the liver by 25-hydroxylation, followed by the conversion to 1,25(OH)2D by the 1α-hydroxylase in kidney under very tightly regulated physiological conditions. 1,25(OH)2D is responsible for maintaining adequate levels of calcium and phosphorus in the blood. Calcium is essential for muscles and nervous system functions, and through the actions of 1,25(OH)2D on intestine, kidney, and bone, the body prevents imbalances of both calcium and phosphate via an intricate system. In addition, 1,25(OH)2D plays an important role in many biological non-calcemic functions throughout the body. 1,25(OH)2D must bind to the vitamin D receptor to carry out its functions. The highly active and lipid soluble 1,25(OH)2D is inactivated by the 24-hydroxylase, which is the enzyme responsible for the major catabolic pathway that ultimately results in the water soluble calcitroic acid for excretion in the urine. Regulation of key players in vitamin D metabolism is reciprocal and very tight. The activating enzyme 1α-hydroxylase, and the catabolic enzyme 24-hydroxylase are reciprocally regulated by PTH, 1,25(OH)2D, and FGF23. Chronic kidney disease is associated with abnormalities of phosphorus homeostasis and altered vitamin D metabolism, and if left untreated, result in significant morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Christakos S, et al. Vitamin D: metabolism. Endocrinol Metab Clin North Am. 2010;39(2):243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Christakos S, DeLuca HF. Minireview: vitamin D: is there a role in extraskeletal health? Endocrinology. 2011;152(8):2930–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeLuca HF. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J. 1988;2(3):224–36.

    CAS  PubMed  Google Scholar 

  5. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96.

    CAS  PubMed  Google Scholar 

  6. DeLuca HF. Triennial Growth Symposium – Vitamin D: bones and beyond. J Anim Sci. 2014;92(3):917–29.

    Article  CAS  PubMed  Google Scholar 

  7. Deluca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014;3:479.

    PubMed  PubMed Central  Google Scholar 

  8. Lo CW, et al. Vitamin D absorption in healthy subjects and in patients with intestinal malabsorption syndromes. Am J Clin Nutr. 1985;42(4):644–9.

    CAS  PubMed  Google Scholar 

  9. Speeckaert M, et al. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta. 2006;372(1–2):33–42.

    Article  CAS  PubMed  Google Scholar 

  10. Bhan I. Vitamin d binding protein and bone health. Int J Endocrinol. 2014;2014:561214.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yousefzadeh P, Shapses SA, Wang X. Vitamin D binding protein impact on 25-hydroxyvitamin D levels under different physiologic and pathologic conditions. Int J Endocrinol. 2014;2014:981581.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu JG, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110(39):15650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Renkema KY, et al. Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann Med. 2008;40(2):82–91.

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol. 2007;18(6):1637–47.

    Article  CAS  PubMed  Google Scholar 

  16. Martin KJ, Gonzalez EA. Long-term management of CKD-mineral and bone disorder. Am J Kidney Dis. 2012;60(2):308–15.

    Article  PubMed  Google Scholar 

  17. Nigwekar SU, Tamez H, Thadhani RI. Vitamin D and chronic kidney disease-mineral bone disease (CKD-MBD). Bonekey Rep. 2014;3:498.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vaziri ND, et al. Impaired intestinal absorption of vitamin D3 in azotemic rats. Am J Clin Nutr. 1983;37(3):403–6.

    CAS  PubMed  Google Scholar 

  19. Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the Big Bang. Cell. 2014;157(1):255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. St-Arnaud R, et al. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.

    CAS  PubMed  Google Scholar 

  21. Jones G, et al. Isolation and identification of 24-hydroxyvitamin D2 and 24,25-dihydroxyvitamin D2. Arch Biochem Biophys. 1980;202(2):450–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mawer EB, et al. Unique 24-hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24-hydroxyvitamin D2 and 1,24-dihydroxyvitamin D2 detectable in human serum. J Clin Endocrinol Metab. 1998;83(6):2156–66.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Zierold PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zierold, C., Martin, K.J., DeLuca, H.F. (2016). Vitamin D Metabolism in Normal and Chronic Kidney Disease States. In: Ureña Torres, P., Cozzolino, M., Vervloet, M. (eds) Vitamin D in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-32507-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32507-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32505-7

  • Online ISBN: 978-3-319-32507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics