Skip to main content

Magnetic Resonance Spectroscopy in Epilepsy

  • Chapter
  • First Online:
Magnetic Resonance Spectroscopy of Degenerative Brain Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 875 Accesses

Abstract

This review discusses the utilization of MR spectroscopy and spectroscopic imaging for epilepsy from a clinical localization and research perspective. As a relatively common neurological problem that affects the entire age range, the understanding and management of epilepsy has benefited substantially from the recent past improvements in anatomical MRI quality and resolution. With multiple facets of epilepsy dysfunction identified metabolically and neurophysiologically, the sensitivity of metabolic and functional MR imaging to such processes suggest that continued MR development can be important as well. Metabolically and spectroscopically, much of the challenge for the most common type of clinical epilepsy (localization related) is the sizable interpatient variability for both location of abnormality and severity of injury as well as the need to adequately evaluate the neocortical ribbon. These factors combine to place emphasis on developments at high field for SNR and voxel size, acceleration, and adequate lipid suppression. From a basic science perspective, substantial work has shown that metabolic and cellular changes are well detected by MRS early and late in the process of epileptogenesis, consistent with major shifts in neuronal and astrocytic processes. Thus, the role of MR spectroscopy has much room to progress for clinical and research applications in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wiebe S, Camfield P, Jetté N, Burneo JG (2009) Epidemiology of epilepsy: prevalence, impact, comorbidity and disparities. Can J Neurol Sci 36(Suppl 2):S7–S16

    PubMed  Google Scholar 

  2. Jallon P (1997) Epilepsy in developing countries. Epilepsia 38:1143–1151

    CAS  PubMed  Google Scholar 

  3. Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):10–4

    PubMed  Google Scholar 

  4. Cockerell OC, Johnson AL, Sander JW, Shorvon SD (1997) Prognosis of epilepsy: a review and further analysis of the first nine years of the British National General Practice Study of Epilepsy, a prospective population-based study. Epilepsia 38(1):31–46

    CAS  PubMed  Google Scholar 

  5. Schuele SU, Lüders HO (2008) Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol 7(6):514–524

    PubMed  Google Scholar 

  6. Téllez-Zenteno JF, Dhar R, Wiebe S (2005) Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 128(Pt 5):1188–1198

    PubMed  Google Scholar 

  7. Spencer SS, Berg AT, Vickrey BG, Sperling MR, Bazil CW, Shinnar S, Langfitt JT, Walczak TS, Pacia SV, Multicenter Study of Epilepsy Surgery (2005) Predicting long-term seizure outcome after resective epilepsy surgery: the multicenter study. Neurology 65:912–8

    CAS  PubMed  Google Scholar 

  8. Hauptman JS, Mathern GW (2012) Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia 53(Suppl 4):98–104

    PubMed  Google Scholar 

  9. Kato M, Malamut BL, Hosokawa S, O’Neill RR, Wakisaka S, Caveness WF (1978) Local glucose utilization in cortical and subcortical structures during focal motor seizures. Trans Am Neurol Assoc 103:39–42

    CAS  PubMed  Google Scholar 

  10. Behar KL, Fitzpatrick SM, Hetherington HP, Shulman RG (1993) Cerebral metabolic studies in vivo by combined 1H/31P and 1H/13C NMR spectroscopic methods. Acta Neurochir Suppl (Wien) 57:9–20

    CAS  PubMed  Google Scholar 

  11. Najm IM, Wang Y, Hong SC, Lüders HO, Ng TC, Comair YG (1997) Temporal changes in proton MRS metabolites after kainic acid-induced seizures in rat brain. Epilepsia 38(1):87–94

    CAS  PubMed  Google Scholar 

  12. van Eijsden P, Notenboom RG, Wu O, de Graan PN, van Nieuwenhuizen O, Nicolay K, Braun KP (2004) In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat. Brain Res 1030(1):11–18

    PubMed  Google Scholar 

  13. Temkin NR (2001) Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42(4):515–524

    CAS  PubMed  Google Scholar 

  14. Dudek FE, Sutula TP (2007) Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 163:755–773

    CAS  PubMed  Google Scholar 

  15. Pitkänen A, Lukasiuk K (2009) Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 14(Suppl 1):16–25

    PubMed  Google Scholar 

  16. Hammen T, Kuzniecky R (2012) Magnetic resonance spectroscopy in epilepsy. Handb Clin Neurol 107:399–408

    PubMed  Google Scholar 

  17. Maudsley AA, Domenig C, Ramsay RE, Bowen BC (2010) Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 88(2–3):127–138

    PubMed  Google Scholar 

  18. Pan JW, Duckrow RB, Gerrard J, Ong C, Hirsch LJ, Resor SR Jr, Zhang Y, Petroff O, Spencer S, Hetherington HP, Spencer D (2013) 7T spectroscopic imaging in surgically treated epilepsy. Epilepsia 54(9):1668–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan JW, Duckrow RB, Spencer D, Avdievich N, Hetherington HP (2013) Spectroscopic imaging of GABA in human brain at 7T. Magn Reson Med 69(2):310–316

    CAS  PubMed  Google Scholar 

  20. Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S (2014) The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 5:31

    PubMed  PubMed Central  Google Scholar 

  21. Filibian M, Frasca A, Maggioni D, Micotti E, Vezzani A, Ravizza T (2012) In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia 53(11):1907–1916

    CAS  PubMed  Google Scholar 

  22. Pearce PS, deLanerolle N, Rapuano A, Hitchens K, Pan JW (2014) Spectroscopic imaging in early post‐status epilepticus in a rodent model. American Epilepsy Society Annual Meeting Seattle WA, 3.072, December 2014

    Google Scholar 

  23. Choy M, Dubé CM, Patterson K, Barnes SR, Maras P, Blood AB, Hasso AN, Obenaus A, Baram TZ (2014) A novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci 34(26):8672–8684

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baron M, Kudin AP, Kunz WS (2007) Mitochondrial dysfunction in neurodegenerative disorders. Biochem Soc Trans 35(Pt 5):1228–1231

    CAS  PubMed  Google Scholar 

  25. Dingledine R, Varvel NH, Dudek FE (2014) When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol 813:109–122

    PubMed  PubMed Central  Google Scholar 

  26. Hauser WA, Lee JR (2002) Do seizures beget seizures? Prog Brain Res 135:215–219

    PubMed  Google Scholar 

  27. Black LC, Schefft BK, Howe SR, Szaflarski JP, Yeh HS, Privitera MD (2010) The effect of seizures on working memory and executive functioning performance. Epilepsy Behav 17(3):412–419

    PubMed  Google Scholar 

  28. Voltzenlogel V, Vignal JP, Hirsch E, Manning L (2014) The influence of seizure frequency on anterograde and remote memory in mesial temporal lobe epilepsy. Seizure 23(9):792–798

    PubMed  Google Scholar 

  29. de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7(4):424–438

    PubMed  PubMed Central  Google Scholar 

  30. Folbergrová J, Kunz WS (2012) Mitochondrial dysfunction in epilepsy. Mitochondrion 12(1):35–40

    PubMed  Google Scholar 

  31. Patel TB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Urenjack J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetyl aspartate in neurons, oligodendrocyte type 2 astroyte progenitors and immature oligodendrocytes in vitro. J Neurochem 59:55–61

    Google Scholar 

  33. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7:1397–1400

    CAS  PubMed  Google Scholar 

  34. Goldstein FB (1969) The enzymatic synthesis of N-acetyl-aspartatic acid by sub-cellular preparation of rat brain. J Biol Chem 244:4257–4260

    CAS  PubMed  Google Scholar 

  35. Heales SJR, Davies SEC, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetylaspartate concentration. Neurochem Res 20:31–38

    CAS  PubMed  Google Scholar 

  36. Connett RJ (1988) Analysis of metabolic control: new insights using scaled creatine kinase model. Am J Physiol 254(6 Pt 2):R949–R959

    CAS  PubMed  Google Scholar 

  37. Guevara CA, Blain CR, Stahl D, Lythgoe DJ, Leigh PN, Barker GJ (2010) Quantitative magnetic resonance spectroscopic imaging in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Eur J Neurol 17(9):1193–1202

    CAS  PubMed  Google Scholar 

  38. Muñoz Maniega S, Cvoro V, Chappell FM, Armitage PA, Marshall I, Bastin ME, Wardlaw JM (2008) Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology 71(24):1993–1999

    PubMed  Google Scholar 

  39. Suhy J, Rooney WD, Goodkin DE, Capizzano AA, Soher BJ, Maudsley AA, Waubant E, Andersson PB, Weiner MW (2000) 1H MRSI comparison of white matter and lesions in primary progressive and relapsing-remitting MS. Mult Scler 6(3):148–155

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huisman MC, van Golen LW, Hoetjes NJ, Greuter HN, Schober P, Ijzerman RG, Diamant M, Lammertsma AA (2012) Cerebral blood flow and glucose metabolism in healthy volunteers measured using a high-resolution PET scanner. EJNMMI Res 2(1):63

    PubMed  PubMed Central  Google Scholar 

  41. Eggers C, Hilker R, Burghaus L, Schumacher B, Heiss WD (2009) High resolution positron emission tomography demonstrates basal ganglia dysfunction in early Parkinson’s disease. J Neurol Sci 276(1–2):27–30. doi:10.1016/j.jns.2008.08.029

    Article  CAS  PubMed  Google Scholar 

  42. Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7(6):525–537

    PubMed  Google Scholar 

  43. Spencer SS (1996) Long-term outcome after epilepsy surgery. Epilepsia 37(9):807–813

    CAS  PubMed  Google Scholar 

  44. Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36(1):21–29

    CAS  PubMed  Google Scholar 

  45. Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39(1):53–60

    CAS  PubMed  Google Scholar 

  46. Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, Maudsley AA, Weiner MW (2001) Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 45(5):899–907

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hugg JW, Laxer KD, Matson GB, Maudsley AA, Weiner MW (1993) Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 34(6):788–794

    CAS  PubMed  Google Scholar 

  48. Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL (1997) Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 42(5):737–746

    CAS  PubMed  Google Scholar 

  49. Kuzniecky R, Hugg JW, Hetherington H, Butterworth E, Bilir E, Faught E, Gilliam F (1998) Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 51(1):66–71

    CAS  PubMed  Google Scholar 

  50. Hetherington HP, Kuzniecky RI, Vives K, Devinsky O, Pacia S, Luciano D, Vasquez B, Haut S, Spencer DD, Pan JW (2007) A subcortical network of dysfunction in TLE measured by MR spectroscopy. Neurology 69:2256–2265

    CAS  PubMed  Google Scholar 

  51. Pan JW, Lo KM, Hetherington HP (2012) Role of high degree and order B0 shimming for spectroscopic imaging at 7T. Magn Reson Med 68(4):1007–1017

    PubMed  Google Scholar 

  52. Pan JW, Spencer DD, Kuzniecky R, Duckrow RB, Hetherington H, Spencer SS (2012) Metabolic networks in epilepsy by MR spectroscopic imaging. Acta Neurol Scand 126(6):411–420

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Saransaari P, Oja SS (1997) Enhanced GABA release in cell-damaging conditions in the adult and developing mouse hippocampus. Int J Dev Neurosci 15(2):163–174

    CAS  PubMed  Google Scholar 

  54. Atwell D, Laughlin S (2001) An energy budget for signaling in the gray matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Google Scholar 

  55. Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragozzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F (2006) Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci U S A 103(22):8465–8468

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Woo N, Lu J, England R, McClellan R, Dufour S, Mount D, Deutch A, Lovinger D, Delpire E (2002) Hyperexcitability and epilepsy associated with disruption of the mouse neuronal specific K-Cl cotransporter gene. Hippocampus 12(2):258–268

    CAS  PubMed  Google Scholar 

  57. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235

    CAS  PubMed  Google Scholar 

  58. Petroff OA, Hyder F, Rothman DL, Mattson RH (2001) Homocarnosine and seizure control in juvenile myoclonic epilepsy and complex partial seizures. Neurology 56(6):709–715

    CAS  PubMed  Google Scholar 

  59. Jayakar P, Dunoyer C, Dean P, Ragheb J, Resnick T, Morrison G, Bhatia S, Duchowny M (2008) Epilepsy surgery in patients with normal or nonfocal MRI scans: integrative strategies offer long-term seizure relief. Epilepsia 49(5):758–764

    PubMed  Google Scholar 

  60. Siegel AM, Jobst BC, Thadani VM, Rhodes CH, Lewis PJ, Roberts DW, Williamson PD (2001) Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia 42(7):883–888

    CAS  PubMed  Google Scholar 

  61. Mueller SG, Laxer KD, Suhy J, Lopez RC, Flenniken DL, Weiner MW (2003) Spectroscopic metabolic abnormalities in mTLE with and without MRI evidence for mesial temporal sclerosis using hippocampal short-TE MRSI. Epilepsia 44:977–980

    PubMed  PubMed Central  Google Scholar 

  62. Mueller SG, Ebel A, Barakos J, Scanlon C, Cheong I, Finlay D, Garcia P, Weiner MW, Laxer KD (2011) Widespread extrahippocampal NAA/(Cr + Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol 258(4):603–612

    PubMed  Google Scholar 

  63. Avdievich NI, Pan JW, Baehring JM, Spencer DD, Hetherington HP (2009) Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magn Reson Med 62:17–25

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hetherington HP, Avdievich NI, Kuznetsov AM, Pan JW (2010) RF shimming for spectroscopic localization in the human brain at 7T. Magn Reson Med 63(1):9–19

    PubMed  PubMed Central  Google Scholar 

  65. Mueller SG, Laxer K, Barakos J, Cashdollar N, Flenniken D, Vermathen P, Matson G, Weiner M (2005) Metabolic characteristics of cortical malformations causing epilepsy. J Neurol 252(9):1082–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C (2014) Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment. Front Neurosci 8:419. doi:10.3389/fnins.2014.00419

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hofmann L, Slotboom J, Boesch C, Kreis R (2001) Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 46(5):855–863

    CAS  PubMed  Google Scholar 

  68. Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL (1996) Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med 35(5):633–639

    CAS  PubMed  Google Scholar 

  69. Gomes WA, Lado FA, de Lanerolle NC, Takahashi K, Pan C, Hetherington HP (2007) Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy. Magn Reson Med 58(2):230–235

    CAS  PubMed  Google Scholar 

  70. Maudsley AA, Domenig C, Sheriff S (2010) Reproducibility of serial whole-brain MR spectroscopic imaging. NMR Biomed 23:251–256

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jullie W. Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pan, J.W. (2016). Magnetic Resonance Spectroscopy in Epilepsy. In: Öz, G. (eds) Magnetic Resonance Spectroscopy of Degenerative Brain Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-33555-1_12

Download citation

Publish with us

Policies and ethics