Skip to main content

Modelling Effects of Radiation Damage

  • Chapter
  • First Online:
Ion Beam Modification of Solids

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 61))

Abstract

This chapter reviews the sources of radiation damage and models that cover irradiation-induced defect production and accumulation, as well as irradiation induced phase transitions. Various models that represent similar processes are compared with each other. Model calculations illustrate the effects of specific model parameters, and selected experimental examples are used to validate and demonstrate the applicability of the models. The roles of temperature and dose rate on damage accumulation processes are discussed and modelled. The different roles of irradiation-induced recovery processes and thermal recovery processes are identified within the models and demonstrated in experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Ranges of Ions in Solids (Pergamon, New York, 2003). http://srim.org

  2. M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Suder, C. Trautmann, Matematisk-fysiske Meddelelser 52, 263 (2006)

    Google Scholar 

  3. J. Zhang, M. Lang, R.C. Ewing, R. Devanathan, W.J. Weber, M. Toulemonde, J. Mater. Res. 25, 1344–1351 (2010)

    Article  ADS  Google Scholar 

  4. G. Hobler, G. Otto, Mater. Sci. Semicond. Process. 6, 1 (2001)

    Article  Google Scholar 

  5. M. Toulemonde, W.J. Weber, G. Li, V. Shutthanandan, P. Kluth, T. Yang, Y. Wang, Y. Zhang, Phys. Rev. B 83, 054106 (2011)

    Article  ADS  Google Scholar 

  6. W.J. Weber, Y. Zhang, H.Y. Xiao, L.M. Wang, RSC Adv. 2(2), 595–604 (2012)

    Article  Google Scholar 

  7. L. Thome, A. Debelle, F. Garrido, P. Trocellier, Y. Serryus, G. Velisa, S. Miro, Appl. Phys. Lett. 102, 141906 (2013)

    Article  ADS  Google Scholar 

  8. W.J. Weber, D.M. Duffy, L. Thomé, Y. Zhang, Curr. Opin. Solid State Mater. Sci. 19, 1 (2015)

    Article  ADS  Google Scholar 

  9. M.L. Swanson, in Handbook of Modern Ion Beam Materials Analysis, ed. by J.R. Tesmer, M. Nastasi (Materials Research Society, Pittsburgh, PA, 1995), p. 231

    Google Scholar 

  10. B. Breeger, E. Wendler, W. Trippensee, Ch. Schubert, W. Wesch, Nucl. Instrum. Meth. Phys. Res. B 174, 661 (2001)

    Article  Google Scholar 

  11. L. Thomé, S. Moll, A. Debelle, F. Garrido, G. Sattonnay, J. Jagielski, Nucl. Instrum. Meth. B 290, 6 (2012)

    Article  ADS  Google Scholar 

  12. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  13. M. Schmidt, H. de Meyer, P.J. Janse van Rensburg, W.E. Meyer, F.D. Auret, Phys. Status Solidi B 251, 211 (2014)

    Article  ADS  Google Scholar 

  14. A. Taylor, J.R. Wallace, E.A. Ryan, A. Philippides, J.R. Wrobel, Nucl. Instrum. Meth. Phys. Res. 189, 211 (1981)

    Google Scholar 

  15. J.A. Hinks, Nucl. Instrum. Meth. Phys. Res. B 267, 3652 (2009)

    Article  ADS  Google Scholar 

  16. E. Wendler, Nucl. Instrum. Meth. Phys. Res. B 267, 2680 (2009)

    Article  ADS  Google Scholar 

  17. S.J. Zinkle, C. Kinoshita, J. Nucl. Mater. 251, 200–217 (1997)

    Article  ADS  Google Scholar 

  18. E. Wendler, AIP Conf. Proc. 1336, 621 (2011)

    Article  ADS  Google Scholar 

  19. K. Matsuura, N. Itoh, T. Suita, J. Phys. Soc. Japan 22, 118 (1967)

    Article  Google Scholar 

  20. F.J. Bryant, A.F.J. Cox, J. Phys. C (Proc. Phys. Soc.) 1, 1734 (1968) (Ser. 2)

    Google Scholar 

  21. F.J. Bryant, A.F.J. Cox, E. Webster, J. Phys. C (Proc. Phys. Soc.) 1, 1737 (1968) (Ser. 2)

    Google Scholar 

  22. V.A. Panov, A.A. Khar’kov, Semiconductors 30, 444 (1996)

    Google Scholar 

  23. F.L. Vook, H.J. Stein, Radiat. Eff. 2, 23–30 (1969)

    Article  ADS  Google Scholar 

  24. J.W. Marx, H.G. Cooper, J.W. Henderson, Phys. Rev. 88, 106 (1952)

    Article  ADS  Google Scholar 

  25. H.G. Cooper, J.S. Koehler, J.W. Marx, Phys. Rev. 97, 599 (1955)

    Article  ADS  Google Scholar 

  26. M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  27. G.S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, 2007)

    Google Scholar 

  28. G.J. Dienes, A.C. Damask, J. Appl. Phys. 29, 1713–1721 (1958)

    Article  ADS  Google Scholar 

  29. G. Lück, R. Sitzmann, Phys. Stat. Sol. 5, 683 (1964)

    Article  ADS  Google Scholar 

  30. G. Lück, R. Sitzmann, Phys. Stat. Sol. 6, 263 (1964)

    Article  ADS  Google Scholar 

  31. W.J. Weber, J. Nucl. Mater. 98, 206 (1981)

    Article  ADS  Google Scholar 

  32. M.W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1969)

    Google Scholar 

  33. W.J. Nellis, Inorg. Nucl. Chem. Lett. 13, 393 (1977)

    Article  Google Scholar 

  34. W.J. Weber, Radiat. Eff. 70, 217 (1983)

    Article  Google Scholar 

  35. N. Hecking, K.F. Heidemann, E. Te Kaat, Nucl. Instrum. Meth. B 15, 760 (1986)

    Article  ADS  Google Scholar 

  36. R. Sizmann, J. Nucl. Mater. 69 and 70, 386–412 (1978)

    Google Scholar 

  37. S.I. Golubov, A.V. Barashev, R.E. Stoller, in Comprehensive Nuclear Materials, ed. by R.J.M. Konings (2012), pp. 357–391

    Google Scholar 

  38. F.W. Clinard Jr, L.W. Hobbs, in Physics of Radiation Effects in Crystals, ed. by R.A. Johnson, A.N. Orlov (Elsevier Science Publishers, Amsterdam, 1986), p. 387

    Chapter  Google Scholar 

  39. P. Thevenard, G. Guiraud, C.H.S. Dupuy, B. Delaunay, Radiat. Eff. 32, 83 (1977)

    Article  Google Scholar 

  40. R.S. Averback, J. Nucl. Mater. 216, 49 (1994)

    Article  ADS  Google Scholar 

  41. F. Gao, W.J. Weber, Phys. Rev. B 63, 214106 (2001)

    Article  ADS  Google Scholar 

  42. E. Zarkadoula, R. Devanathan, W.J. Weber, M.A. Seaton, I.T. Todorov, K. Nordlund, M.T. Dove, K. Trachenko, J. Appl. Phys. 115, 083507 (2014)

    Article  ADS  Google Scholar 

  43. C.S. Schnohr, E. Wendler, K. Gartner, W. Wesch, K. Ellmer, J. Appl. Phys. 99, 123511 (2006)

    Article  ADS  Google Scholar 

  44. L.T. Chadderton, Radiat. Eff. 8, 77 (1971)

    Article  ADS  Google Scholar 

  45. E. Wendler, B. Breeger, C. Schubert, W. Wesch, Nucl. Instrum. Meth. B 147, 155 (1999)

    Article  ADS  Google Scholar 

  46. E. Wendler, K. Gärtner, W. Wesch, Nucl. Instrum. Meth. B 266, 2872 (2008)

    Article  ADS  Google Scholar 

  47. W.J. Weber, Nucl. Instrum. Meth. B 166–167, 96–106 (2000)

    Google Scholar 

  48. M.R. Pascucci, J.L. Hutchison, L.W. Hobbs, Radiat. Eff. 74, 219 (1983)

    Article  Google Scholar 

  49. W.L. Gong, L.M. Wang, R.C. Ewing, J. Zhang, Phys. Rev. B 54, 3800 (1996)

    Article  ADS  Google Scholar 

  50. J.F. Gibbons, Proc. IEEE 60, 1062 (1972)

    Article  Google Scholar 

  51. G. Sattonnay, C. Grygiel, I. Monnet, C. Legros, M. Herbst-Ghysel, L. Thomé, Acta Mater. 60, 22 (2012)

    Article  Google Scholar 

  52. Y. Zhang, F. Gao, W. Jiang, D.E. McCready, W.J. Weber, Phys. Rev. B 70, 125203 (2004)

    Article  ADS  Google Scholar 

  53. Y. Zhang, W.J. Weber, V. Shutthanandan, R. Devanathan, S. Thevuthasan, G. Balakrishnan, D.M. Paul, J. Appl. Phys. 95, 2866 (2004)

    Article  ADS  Google Scholar 

  54. W. Jiang, Y. Zhang, W.J. Weber, Phys. Rev. B 70, 165208 (2004)

    Article  ADS  Google Scholar 

  55. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  ADS  Google Scholar 

  56. S.U. Campisano, S. Coffa, V. Rainieri, F. Priolo, E. Rimini, Nucl. Instrum. Meth. B 80(81), 514 (1993)

    Article  ADS  Google Scholar 

  57. W. Bolse, Nucl. Instrum. Meth. B 141, 133 (1998)

    Article  ADS  Google Scholar 

  58. A.C. Damask, G.J. Dienes, Point Defects in Metals (Gordon and Breach, New York, 1963)

    Google Scholar 

  59. G. Carter, Radiat. Eff. 100, 281 (1986)

    Article  Google Scholar 

  60. G. Carter, M.J. Nobes, J. Mater. Res. 6, 2103 (1991)

    Article  ADS  Google Scholar 

  61. F.F. Morehead, B.L. Crowder, Radiat. Eff. 6, 27 (1970)

    Article  ADS  Google Scholar 

  62. J.R. Dennis, E.B. Hale, J. Appl. Phys. 49, 1119 (1978)

    Article  ADS  Google Scholar 

  63. J. Linnros, R.G. Elliman, W.L. Brown, J. Mater. Res. 3, 1208 (1988)

    Article  ADS  Google Scholar 

  64. V. Heera, T. Henkel, R. Kögler, W. Skorupa, Phys. Rev. B 52, 15776 (1995)

    Article  ADS  Google Scholar 

  65. T.E. Haynes, O.W. Holland, Appl. Phys. Lett. 59, 452 (1991)

    Article  ADS  Google Scholar 

  66. R.A. Brown, J.S. Williams, Phys. Rev. B 64, 155202 (2001)

    Article  ADS  Google Scholar 

  67. E. Wendler, Th Opfermann, P.I. Gaiduk, J. Appl. Phys. 82, 5965 (1997)

    Article  ADS  Google Scholar 

  68. A. Meldrum, S.J. Zinkle, L.A. Boatner, R.C. Ewing, Phys. Rev. B 59, 3981 (1999)

    Article  ADS  Google Scholar 

  69. W.J. Weber, Y. Zhang, L. Wang, Nucl. Instrum. Meth. B 277, 1 (2012)

    Article  ADS  Google Scholar 

  70. W.J. Weber, Y. Zhang, H. Xiao, L. Wang, RSC Adv. 2, 595 (2012)

    Article  Google Scholar 

  71. J.K.N. Lindner, R. Zuschlag, E.H. te Kaat, Nucl. Instrum. Meth. Phys. Res. B 62, 314 (1992)

    Article  ADS  Google Scholar 

  72. E. Wendler, Th. Bierschenk, W. Wesch, E. Friedland, J. B. Malherbe, Nucl. Instrum. Meth. Phys. Res. B

    Google Scholar 

  73. R. Webb, G. Carter, Radiat. Eff. 42, 159 (1979)

    Article  Google Scholar 

  74. G. Carter, R. Webb, Radiat. Eff. 43, 19 (1979)

    Article  Google Scholar 

  75. R.P. Webb, G. Carter, Radiat. Eff. 59, 69 (1981)

    Article  Google Scholar 

  76. G. Carter, R.G. Elliman, Radiat. Eff. 68, 155 (1983)

    Article  Google Scholar 

  77. E. Schmidt, T. Steinbach, W. Wesch, J. Phys. D Appl. Phys. 47, 265302 (2014)

    Article  ADS  Google Scholar 

  78. J. Jagieski, L. Thome, Vacuum 81, 1352 (2007)

    Article  ADS  Google Scholar 

  79. S. Moll, G. Sattonnay, L. Thomé, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W.J. Weber, Phys. Rev. B 84, 064115 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (WJW) gratefully acknowledges the support of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weber, W.J., Wendler, E. (2016). Modelling Effects of Radiation Damage. In: Wesch, W., Wendler, E. (eds) Ion Beam Modification of Solids. Springer Series in Surface Sciences, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-33561-2_3

Download citation

Publish with us

Policies and ethics