Skip to main content

Chemistry, Pharmacodynamics, and Pharmacokinetics of NSAIDs

  • Chapter
  • First Online:
NSAIDs and Aspirin

Abstract

Numerous chemically different entities are clustered under the label of nonsteroidal anti-inflammatory drugs (NSAIDs). They share the ability to inhibit prostanoid synthesis by blocking the activity of the cyclooxygenase enzymes and, as a consequence, to exert anti-inflammatory, analgesic, and antipyretic effects. On the other hand, by hindering the housekeeping roles of prostaglandins, they also deteriorate the gastrointestinal mucosal barrier and the renal and endothelial hemodynamic regulation. The present chapter compiles available pharmacokinetic and pharmacodynamic data that may help to understand the different therapeutic profiles reported for particular agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smyth EM, Grosser T, Wang M, et al. Prostanoids in health and disease. J Lipid Res. 2009;50(Suppl):S423–8.

    PubMed  PubMed Central  Google Scholar 

  2. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aoki T, Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci. 2012;33:304–11.

    Article  CAS  PubMed  Google Scholar 

  4. Ito S, Okuda-Ashitaka E, Minami T. Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociceptin and nocistatin. Neurosci Res. 2001;41:299–332.

    Article  CAS  PubMed  Google Scholar 

  5. Samad TA, Sapirstein A, Woolf CJ. Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol Med. 2002;8:390–6.

    Article  CAS  PubMed  Google Scholar 

  6. Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev. 2006;52:201–43.

    Article  CAS  PubMed  Google Scholar 

  7. Xie WL, Chipman JG, Robertson DL, et al. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A. 1991;88:2692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kujubu DA, Fletcher BS, Varnum BC, et al. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem. 1991;266:12866–72.

    CAS  PubMed  Google Scholar 

  9. Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov. 2003;2:179–91.

    Article  CAS  PubMed  Google Scholar 

  10. Marnett LJ. The COXIB experience: a look in the rearview mirror. Annu Rev Pharmacol Toxicol. 2009;49:265–90.

    Article  CAS  PubMed  Google Scholar 

  11. McAdam BF, Mardini IA, Habib A, et al. Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. J Clin Invest. 2000;105:1473–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang FY, Wan Y, Zhang ZK, et al. Peripheral formalin injection induces long-lasting increases in cyclooxygenase 1 expression by microglia in the spinal cord. J Pain. 2007;8:110–7.

    Article  CAS  PubMed  Google Scholar 

  13. Patrono C, Baigent C. Nonsteroidal anti-inflammatory drugs and the heart. Circulation. 2014;129:907–16.

    Article  PubMed  Google Scholar 

  14. Warner TD, Giuliano F, Vojnovic I, et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A. 1999;96:7563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ouellet M, Percival MD. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms. Arch Biochem Biophys. 2001;387:273–80.

    Article  CAS  PubMed  Google Scholar 

  16. Boutaud O, Aronoff DM, Richardson JH, et al. Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H(2) synthases. Proc Natl Acad Sci U S A. 2002;99:7130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garavito RM, Mulichak AM. The structure of mammalian cyclooxygenases. Annu Rev Biophys Biomol Struct. 2003;32:183–206.

    Article  CAS  PubMed  Google Scholar 

  18. Blobaum AL, Marnett LJ. Structural and functional basis of cyclooxygenase inhibition. J Med Chem. 2007;50:1425–41.

    Article  CAS  PubMed  Google Scholar 

  19. Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111:5821–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kulmacz RJ, Lands WE. Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti-inflammatory agents. J Biol Chem. 1985;260:12572–8.

    CAS  PubMed  Google Scholar 

  21. Rome LH, Lands WE. Structural requirements for time-dependent inhibition of prostaglandin biosynthesis by anti-inflammatory drugs. Proc Natl Acad Sci U S A. 1975;72:4863–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A. 1975;72:3073–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gierse JK, Koboldt CM, Walker MC, et al. Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem J. 1999;339(Pt 3):607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rowlinson SW, Kiefer JR, Prusakiewicz JJ, et al. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. J Biol Chem. 2003;278:45763–9.

    Article  CAS  PubMed  Google Scholar 

  25. Walker MC, Kurumbail RG, Kiefer JR, et al. A three-step kinetic mechanism for selective inhibition of cyclo-oxygenase-2 by diarylheterocyclic inhibitors. Biochem J. 2001;357:709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan C, Rieke CJ, Rimon G, et al. Partnering between monomers of cyclooxygenase-2 homodimers. Proc Natl Acad Sci U S A. 2006;103:6142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pereira-Leite C, Nunes C, Reis S. Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res. 2013;52:571–84.

    Article  CAS  PubMed  Google Scholar 

  28. Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001;15:2057–72.

    Article  CAS  PubMed  Google Scholar 

  29. Gurpinar E, Grizzle WE, Piazza GA. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front Oncol. 2013;3:181.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Diaz-Gonzalez F, Sanchez-Madrid F. NSAIDs: learning new tricks from old drugs. Eur J Immunol. 2015;45:679–86.

    Article  CAS  PubMed  Google Scholar 

  31. Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res. 2015;8:105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brune K, Renner B, Hinz B. Using pharmacokinetic principles to optimize pain therapy. Nat Rev Rheumatol. 2010;6:589–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Calatayud Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calatayud, S., Esplugues, J.V. (2016). Chemistry, Pharmacodynamics, and Pharmacokinetics of NSAIDs. In: Lanas, A. (eds) NSAIDs and Aspirin. Springer, Cham. https://doi.org/10.1007/978-3-319-33889-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33889-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33887-3

  • Online ISBN: 978-3-319-33889-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics