Skip to main content

Abstract

Patient blood management (PBM) refers to “the appropriate use of blood and blood components, with a goal of minimizing their use” (Goodnough and Shander, Anesthesiology 116:1367–1376, 2012). In short, PBM is conservative transfusion practice, and its prioritization stems from the increased recognition of transfusion-associated risk, evidence of favorable outcomes with restrictive transfusion practice, and—importantly—a drive toward cost containment. When applied thoughtfully, PBM saves cost and improves clinical outcomes. The following chapter provides an overview of PBM, from steps toward implementation to description of the individual measures within the PBM framework. The latter include policy and clinical guidelines, personnel and organizational oversight, perioperative interventions, information technology, and specialized products/processes. Each has its own advantages and disadvantages, and implementation should be tailored to the specific institutional needs given limited resources and human capacity. Foremost, successful implementation relies on executive support and interdisciplinary cooperation. Even with modest investment, PBM offers wide-ranging benefits and conserves a limited resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodnough LT, Shander A. Patient blood management. Anesthesiology. 2012;116(6):1367–76.

    Article  PubMed  Google Scholar 

  2. Hebert PC, Transfusion Requirements in Critical Care Investigators and the Canadian Critical Care Trials Group. Transfusion requirements in critical care (TRICC): a multicentre, randomized, controlled clinical study. Br J Anaesth. 1998;81 Suppl 1:25–33.

    PubMed  Google Scholar 

  3. Perkins HA, Busch MP. Transfusion-associated infections: 50 years of relentless challenges and remarkable progress. Transfusion. 2010;50(10):2080–99.

    Article  PubMed  Google Scholar 

  4. Zou S, Dorsey KA, Notari EP, Foster GA, Krysztof DE, Musavi F, et al. Prevalence, incidence, and residual risk of human immunodeficiency virus and hepatitis C virus infections among United States blood donors since the introduction of nucleic acid testing. Transfusion. 2010;50(7):1495–504.

    Article  PubMed  Google Scholar 

  5. Zou S, Stramer SL, Dodd RY. Donor testing and risk: current prevalence, incidence, and residual risk of transfusion-transmissible agents in US allogeneic donations. Transfus Med Rev. 2012;26(2):119–28.

    Article  PubMed  Google Scholar 

  6. Hendrickson JE, Hillyer CD. Noninfectious serious hazards of transfusion. Anesth Analg. 2009;108(3):759–69.

    Article  PubMed  Google Scholar 

  7. Hofmann A, Ozawa S, Farrugia A, Farmer SL, Shander A. Economic considerations on transfusion medicine and patient blood management. Best Pract Res Clin Anaesthesiol. 2013;27(1):59–68.

    Article  PubMed  Google Scholar 

  8. Berwick DM, Hackbarth AD. Eliminating waste in US health care. JAMA. 2012;307(14):1513–6.

    Article  CAS  PubMed  Google Scholar 

  9. Goodnough LT, Shah N. The next chapter in patient blood management: real-time clinical decision support. Am J Clin Pathol. 2014;142(6):741–7.

    Article  PubMed  Google Scholar 

  10. Kacker S, Frick KD, Tobian AA. The costs of transfusion: economic evaluations in transfusion medicine, Part 1. Transfusion. 2013;53(7):1383–5.

    Article  PubMed  Google Scholar 

  11. HHS. The 2011 National Blood Collection and Utilization Survey report. Washington, DC: U.S. Department of Health & Human Services; 2011.

    Google Scholar 

  12. Shander A, Hofmann A, Ozawa S, Theusinger OM, Gombotz H, Spahn DR. Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion. 2010;50(4):753–65.

    Article  PubMed  Google Scholar 

  13. Jefferies LC, Sachais BS, Young DS. Blood transfusion costs by diagnosis-related groups in 60 university hospitals in 1995. Transfusion. 2001;41(4):522–9.

    Article  CAS  PubMed  Google Scholar 

  14. Shortt J, Polizzotto MN, Waters N, Borosak M, Moran M, Comande M, et al. Assessment of the urgency and deferability of transfusion to inform emergency blood planning and triage: the bloodhound prospective audit of red blood cell use. Transfusion. 2009;49(11):2296–303.

    Article  PubMed  Google Scholar 

  15. Frank SM, Savage WJ, Rothschild JA, Rivers RJ, Ness PM, Paul SL, et al. Variability in blood and blood component utilization as assessed by an anesthesia information management system. Anesthesiology. 2012;117(1):99–106.

    Article  PubMed  Google Scholar 

  16. Frank SM, Resar LM, Rothschild JA, Dackiw EA, Savage WJ, Ness PM. A novel method of data analysis for utilization of red blood cell transfusion. Transfusion. 2013;53(12):3052–9.

    Article  PubMed  Google Scholar 

  17. Ejaz A, Spolverato G, Kim Y, Frank SM, Pawlik TM. Variation in triggers and use of perioperative blood transfusion in major gastrointestinal surgery. Br J Surg. 2014;101(11):1424–33.

    Article  CAS  PubMed  Google Scholar 

  18. Henry E, Christensen RD, Sheffield MJ, Eggert LD, Carroll PD, Minton SD, et al. Why do four NICUs using identical RBC transfusion guidelines have different gestational age-adjusted RBC transfusion rates? J Perinatol. 2015;35(2):132–6.

    Article  CAS  PubMed  Google Scholar 

  19. Roubinian NH, Escobar GJ, Liu V, Gardner MN, Carson JL, Kleinman SH, et al. Decreased red blood cell use and mortality in hospitalized patients. JAMA Intern Med. 2014;174(8):1405–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pena JR, Dzik WS. Utilization management in the blood transfusion service. Clin Chim Acta. 2014;427:178–82.

    Article  CAS  PubMed  Google Scholar 

  21. Fung MK, Grossman BJ, Hillyer C, Westhoff CM, editors. AABB technical manual. 18th ed. Bethesda, MD: AABB; 2014.

    Google Scholar 

  22. Hess JR, Lelkens CC, Holcomb JB, Scalea TM. Advances in military, field, and austere transfusion medicine in the last decade. Transfus Apher Sci. 2013;49(3):380–6.

    Article  PubMed  Google Scholar 

  23. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murdock AD, Berseus O, Hervig T, Strandenes G, Lunde TH. Whole blood: the future of traumatic hemorrhagic shock resuscitation. Shock. 2014;41 Suppl 1:62–9.

    Article  PubMed  Google Scholar 

  25. Jobes DR, Sesok-Pizzini D, Friedman D. Reduced transfusion requirement with use of fresh whole blood in pediatric cardiac surgical procedures. Ann Thorac Surg. 2015;99(5):1706–11.

    Article  PubMed  Google Scholar 

  26. Mou SS, Giroir BP, Molitor-Kirsch EA, Leonard SR, Nikaidoh H, Nizzi F, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med. 2004;351(16):1635–44.

    Article  CAS  PubMed  Google Scholar 

  27. Wiegmann TL, Mintz PD. The growing role of AABB clinical practice guidelines in improving patient care. Transfusion. 2015;55(5):935–6.

    Article  PubMed  Google Scholar 

  28. Berger MD, Gerber B, Arn K, Senn O, Schanz U, Stussi G. Significant reduction of red blood cell transfusion requirements by changing from a double-unit to a single-unit transfusion policy in patients receiving intensive chemotherapy or stem cell transplantation. Haematologica. 2012;97(1):116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hardy JF. Current status of transfusion triggers for red blood cell concentrates. Transfus Apher Sci. 2004;31(1):55–66.

    Article  PubMed  Google Scholar 

  30. Hogshire L, Carson JL. Red blood cell transfusion: what is the evidence when to transfuse? Curr Opin Hematol. 2013;20(6):546–51.

    Article  PubMed  Google Scholar 

  31. Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB, Fung MK, et al. Red blood cell transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2012;157(1):49–58.

    Article  PubMed  Google Scholar 

  32. Tinmouth A, Thompson T, Arnold DM, Callum JL, Gagliardi K, Lauzon D, et al. Utilization of frozen plasma in Ontario: a provincewide audit reveals a high rate of inappropriate transfusions. Transfusion. 2013;53(10):2222–9.

    PubMed  Google Scholar 

  33. Food and Drug Administration. Fatalities Reported to FDA Following Blood Collection and Transfusion: Annual Summary for Fiscal Year 2012. Rockville, MD: CBER Office of Communication, Training, and Manufacturers Assistance, 2014.

    Google Scholar 

  34. Abdel-Wahab OI, Healy B, Dzik WH. Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion. 2006;46(8):1279–85.

    Article  PubMed  Google Scholar 

  35. Szczepiorkowski ZM, Dunbar NM. Transfusion guidelines: when to transfuse. Hematology Am Soc Hematol Educ Program. 2013;2013:638–44.

    PubMed  Google Scholar 

  36. UCSF. Fresh frozen plasma (FFP). 2015. http://labmed.ucsf.edu/labmanual/mftlng-mtzn/test/info/4bb.html - FFP. Accessed 17 Aug 2015.

  37. Kaufman RM, Djulbegovic B, Gernsheimer T, Kleinman S, Tinmouth AT, Capocelli KE, et al. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2015;162(3):205–13.

    Article  PubMed  Google Scholar 

  38. Slichter SJ. Relationship between platelet count and bleeding risk in thrombocytopenic patients. Transfus Med Rev. 2004;18(3):153–67.

    Article  PubMed  Google Scholar 

  39. Gaydos LA, Freireich EJ, Mantel N. The quantitative relation between platelet count and hemorrhage in patients with acute leukemia. N Engl J Med. 1962;266:905–9.

    Article  CAS  PubMed  Google Scholar 

  40. Rebulla P, Finazzi G, Marangoni F, Avvisati G, Gugliotta L, Tognoni G, Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto, et al. The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. N Engl J Med. 1997;337(26):1870–5.

    Article  CAS  PubMed  Google Scholar 

  41. Heddle NM, Cook RJ, Sigouin C, Slichter SJ, Murphy M, Rebulla P. A descriptive analysis of international transfusion practice and bleeding outcomes in patients with acute leukemia. Transfusion. 2006;46(6):903–11.

    Article  PubMed  Google Scholar 

  42. Nascimento B, Goodnough LT, Levy JH. Cryoprecipitate therapy. Br J Anaesth. 2014;113(6):922–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diaz R, Soundar E, Hartman SK, Dreyer Z, Teruya J, Hui SK. Granulocyte transfusions for children with infection and neutropenia or granulocyte dysfunction. Pediatr Hematol Oncol. 2014;31(5):425–34.

    Article  PubMed  Google Scholar 

  44. Estcourt LJ, Stanworth S, Doree C, Blanco P, Hopewell S, Trivella M, et al. Granulocyte transfusions for preventing infections in people with neutropenia or neutrophil dysfunction. Cochrane Database Syst Rev. 2015;6:CD005341.

    Google Scholar 

  45. Price T. SCI-16 the RING study: a randomized controlled trial of GCSF-stimulated granulocytes in granulocytopenic patients. 56th ASH annual meeting and exposition, San Francisco, CA, 6 Dec 2014.

    Google Scholar 

  46. Greinacher A, Fendrich K, Brzenska R, Kiefel V, Hoffmann W. Implications of demographics on future blood supply: a population-based cross-sectional study. Transfusion. 2011;51(4):702–9.

    Article  PubMed  Google Scholar 

  47. Benjamin RJ, Whitaker BI. Boom or bust? Estimating blood demand and supply as the baby boomers age. Transfusion. 2011;51(4):670–3.

    Article  PubMed  Google Scholar 

  48. Freedman J. The ONTraC Ontario program in blood conservation. Transfus Apher Sci. 2014;50(1):32–6.

    Article  PubMed  Google Scholar 

  49. Farmer SL, Towler SC, Leahy MF, Hofmann A. Drivers for change: Western Australia Patient Blood Management Program (WA PBMP), World Health Assembly (WHA) and Advisory Committee on Blood Safety and Availability (ACBSA). Best Pract Res Clin Anaesthesiol. 2013;27(1):43–58.

    Article  PubMed  Google Scholar 

  50. Leahy MF, Roberts H, Mukhtar SA, Farmer S, Tovey J, Jewlachow V, et al. A pragmatic approach to embedding patient blood management in a tertiary hospital. Transfusion. 2014;54(4):1133–45.

    Article  PubMed  Google Scholar 

  51. Spahn DR, Shander A, Hofmann A. The chiasm: transfusion practice versus patient blood management. Best Pract Res Clin Anaesthesiol. 2013;27(1):37–42.

    Article  PubMed  Google Scholar 

  52. Fischer DP, Zacharowski KD, Muller MM, Geisen C, Seifried E, Muller H, et al. Patient blood management implementation strategies and their effect on physicians’ risk perception, clinical knowledge and perioperative practice—the Frankfurt experience. Transfus Med Hemother. 2015;42(2):91–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shander A, Van Aken H, Colomina MJ, Gombotz H, Hofmann A, Krauspe R, et al. Patient blood management in Europe. Br J Anaesth. 2012;109(1):55–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. JCHO. Patient Blood Management Performance Measures Project. 2011. http://www.jointcommission.org/patient_blood_management_performance_measures_project/default.aspx. Accessed 4 June 2015.

  55. JCHO. Coming soon: Patient Blood Management Certification option. The Joint Commission Lab Focus [Internet]. 2013; 2015(3):1. http://www.jointcommission.org/assets/1/18/lab_focus_3_2013.pdf. Accessed 4 June 2015.

  56. ACGME. ACGME program requirements for graduate medical education in blood banking/transfusion medicine. 2015. https://www.acgme.org/acgmeweb/Portals/0/PFAssets/ProgramRequirements/305_blood_banking_path_07012015_1-YR.pdf. Accessed 11 Aug 2015.

  57. AABB. Building a better patient blood management program: identifying tools, solving problems and promoting patient safety. 2015. http://www.aabb.org/pbm/Documents/pbm-whitepaper-form-direct.html. Accessed 4 June 2015.

  58. ABIM. Choosing wisely: five things physicians and patients should question. 2014. http://www.aabb.org/pbm/Documents/Choosing-Wisely-Five-Things-Physicians-and-Patients-Should-Question.PDF. 4 June 2015.

  59. Society of Thoracic Surgeons Blood Conservation Guideline Task F, Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91(3):944–82.

    Google Scholar 

  60. Kaur G, Kaur P. Hospital transfusion committee: role and responsibilities. Indian J Pathol Microbiol. 2014;57(2):352–4.

    Article  PubMed  Google Scholar 

  61. Dzik WH, Corwin H, Goodnough LT, Higgins M, Kaplan H, Murphy M, et al. Patient safety and blood transfusion: new solutions. Transfus Med Rev. 2003;17(3):169–80.

    Article  PubMed  Google Scholar 

  62. Saxena S, Shulman IA. Resurgence of the blood utilization committee. Transfusion. 2003;43(8):998–1006.

    Article  PubMed  Google Scholar 

  63. AuBuchon JP, Puca K, Saxena S, Shulman IA, Waters JH. Getting started in patient blood management. Bethesda, MD: AABB, 2011.

    Google Scholar 

  64. Zijlker-Jansen PY, Janssen MP, van Tilborgh-de Jong AJ, Schipperus MR, Wiersum-Osselton JC. Quality indicators for the hospital transfusion chain: a national survey conducted in 100 Dutch hospitals. Vox Sang. 2015;109(3):287–95.

    Article  CAS  PubMed  Google Scholar 

  65. Boral LI, Bernard A, Hjorth T, Davenport D, Zhang D, MacIvor DC. How do I implement a more restrictive transfusion trigger of hemoglobin level of 7 g/dL at my hospital? Transfusion. 2015;55(5):937–45.

    Article  CAS  PubMed  Google Scholar 

  66. Vrotsos E, Gonzalez B, Goldszer RC, Rosen G, La Pietra A, Howard L. Improving blood transfusion practice by educational emphasis of the Blood Utilization Committee: experience of one hospital. Transfus Clin Biol. 2015;22(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  67. Linden JV, Wagner K, Voytovich AE, Sheehan J. Transfusion errors in New York State: an analysis of 10 years’ experience. Transfusion. 2000;40(10):1207–13.

    Article  CAS  PubMed  Google Scholar 

  68. Sazama K. Reports of 355 transfusion-associated deaths: 1976 through 1985. Transfusion. 1990;30(7):583–90.

    Article  CAS  PubMed  Google Scholar 

  69. Sharma G, Parwani AV, Raval JS, Triulzi DJ, Benjamin RJ, Pantanowitz L. Contemporary issues in transfusion medicine informatics. J Pathol Inform. 2011;2:3.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng YW, Wilkinson JM. An experience of the introduction of a blood bank automation system (Ortho AutoVue Innova) in a regional acute hospital. Transfus Apher Sci. 2015;53:58–63.

    Article  PubMed  Google Scholar 

  71. Chapman JF, Milkins C, Voak D. The computer crossmatch: a safe alternative to the serological crossmatch. Transfus Med. 2000;10(4):251–6.

    Article  CAS  PubMed  Google Scholar 

  72. Veihola M, Aroviita P, Linna M, Sintonen H, Kekomaki R. Variation of platelet production and discard rates in 17 blood centers representing 10 European countries from 2000 to 2002. Transfusion. 2006;46(6):991–5.

    Article  PubMed  Google Scholar 

  73. Gomez AT, Quinn JG, Doiron DJ, Watson S, Crocker BD, Cheng CK. Implementation of a novel real-time platelet inventory management system at a multi-site transfusion service. Transfusion. 2015;55:2070–5.

    Article  PubMed  Google Scholar 

  74. Butch SH. Computerization in the transfusion service. Vox Sang. 2002;83 Suppl 1:105–10.

    Article  PubMed  Google Scholar 

  75. AABB, editor. AABB standards for blood bank and transfusion services, 29th ed. Bethesda, MD: AABB; 2014.

    Google Scholar 

  76. Frank SM, Oleyar MJ, Ness PM, Tobian AA. Reducing unnecessary preoperative blood orders and costs by implementing an updated institution-specific maximum surgical blood order schedule and a remote electronic blood release system. Anesthesiology. 2014;121(3):501–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mazepa MA, Raval JS, Park YA, Education Committee of the Academy of Clinical Laboratory P, Scientists. Pathology consultation on electronic crossmatch. Am J Clin Pathol. 2014;141(5):618–24.

    Article  PubMed  Google Scholar 

  78. Bloch EM, Cohn C, Bruhn R, Hirschler N, Nguyen KA. A cross-sectional pilot study of blood utilization in 27 hospitals in Northern California. Am J Clin Pathol. 2014;142(4):498–505.

    Article  PubMed  Google Scholar 

  79. Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-based clinical decision support systems on physician performance and patient outcomes: a systematic review. JAMA. 1998;280(15):1339–46.

    Article  CAS  PubMed  Google Scholar 

  80. Hibbs SP, Nielsen ND, Brunskill S, Doree C, Yazer MH, Kaufman RM, et al. The impact of electronic decision support on transfusion practice: a systematic review. Transfus Med Rev. 2015;29(1):14–23.

    Article  PubMed  Google Scholar 

  81. Goodnough LT, Shieh L, Hadhazy E, Cheng N, Khari P, Maggio P. Improved blood utilization using real-time clinical decision support. Transfusion. 2014;54(5):1358–65.

    Article  CAS  PubMed  Google Scholar 

  82. Fernandez Perez ER, Winters JL, Gajic O. The addition of decision support into computerized physician order entry reduces red blood cell transfusion resource utilization in the intensive care unit. Am J Hematol. 2007;82(7):631–3.

    Article  PubMed  Google Scholar 

  83. Richardson NG, Bradley WN, Donaldson DR, O’Shaughnessy DF. Maximum surgical blood ordering schedule in a district general hospital saves money and resources. Ann R Coll Surg Engl. 1998;80(4):262–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng G. Experiences with “self service” electronic blood banking. Vox Sang. 1998;74 Suppl 2:427–9.

    Article  PubMed  Google Scholar 

  85. Shaz BH, Dente CJ, Harris RS, MacLeod JB, Hillyer CD. Transfusion management of trauma patients. Anesth Analg. 2009;108(6):1760–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dente CJ, Shaz BH, Nicholas JM, Harris RS, Wyrzykowski AD, Patel S, et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma. 2009;66(6):1616–24.

    Article  PubMed  Google Scholar 

  87. Baumann Kreuziger LM, Morton CT, Subramanian AT, Anderson CP, Dries DJ. Not only in trauma patients: hospital-wide implementation of a massive transfusion protocol. Transfus Med. 2014;24(3):162–8.

    Article  CAS  PubMed  Google Scholar 

  88. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    Article  PubMed  Google Scholar 

  89. Cotton BA, Gunter OL, Isbell J, Au BK, Robertson AM, Morris Jr JA, et al. Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma. 2008;64(5):1177–82. Discussion 82–3.

    Article  PubMed  Google Scholar 

  90. Pham HP, Shaz BH. Update on massive transfusion. Br J Anaesth. 2013;111 Suppl 1:i71–82.

    Article  PubMed  Google Scholar 

  91. Holcomb JB, del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Waters JH. Role of the massive transfusion protocol in the management of haemorrhagic shock. Br J Anaesth. 2014;113 Suppl 2:ii3–8.

    Google Scholar 

  93. Dudaryk R, Hess AS, Varon AJ, Hess JR. What is new in the blood bank for trauma resuscitation. Curr Opin Anaesthesiol. 2015;28(2):206–9.

    Article  PubMed  Google Scholar 

  94. Hendrickson JE, Shaz BH, Pereira G, Parker PM, Jessup P, Atwell F, et al. Implementation of a pediatric trauma massive transfusion protocol: one institution’s experience. Transfusion. 2012;52(6):1228–36.

    Article  CAS  PubMed  Google Scholar 

  95. Mitra B, O’Reilly G, Cameron PA, Zatta A, Gruen RL. Effectiveness of massive transfusion protocols on mortality in trauma: a systematic review and meta-analysis. ANZ J Surg. 2013;83(12):918–23.

    Article  PubMed  Google Scholar 

  96. de Haas M, Thurik FF, Koelewijn JM, van der Schoot CE. Haemolytic disease of the fetus and newborn. Vox Sang. 2015;109:99–113.

    Article  PubMed  Google Scholar 

  97. Egbor M, Knott P, Bhide A. Red-cell and platelet alloimmunisation in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2012;26(1):119–32.

    Article  PubMed  Google Scholar 

  98. Wiener AS, Gordon EB. Simple method of preparing anti-Rh serum in normal male donors. Am J Clin Pathol. 1947;17(1):67–70.

    CAS  PubMed  Google Scholar 

  99. Gunson HH, Stratton F, Cooper DG, Rawlinson VI. Primary immunization of Rh-negative volunteers. Br Med J. 1970;1(5696):593–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tchakarov A, Hobbs R, Bai Y. Transfusion of D+ red blood cells to D- individuals in trauma situations. Immunohematology. 2014;30(4):149–52.

    PubMed  Google Scholar 

  101. Yazer MH, Triulzi DJ. Detection of anti-D in D- recipients transfused with D+ red blood cells. Transfusion. 2007;47(12):2197–201.

    Article  PubMed  Google Scholar 

  102. Schonewille H, Haak HL, van Zijl AM. Alloimmunization after blood transfusion in patients with hematologic and oncologic diseases. Transfusion. 1999;39(7):763–71.

    Article  CAS  PubMed  Google Scholar 

  103. Baldwin ML, Ness PM, Scott D, Braine H, Kickler TS. Alloimmunization to D antigen and HLA in D-negative immunosuppressed oncology patients. Transfusion. 1988;28(4):330–3.

    Article  CAS  PubMed  Google Scholar 

  104. AABB. Blood FAQ. http://www.aabb.org/tm/Pages/bloodfaq.aspx - a8.

  105. UBS. A new standard of transfusion care: appropriate use of O-negative red blood cells. 2015. http://hospitals.unitedbloodservices.org/optimumtx/index.html. Accessed 18 May 2015.

  106. Tee MC, Shubert CR, Ubl DS, Habermann EB, Nagorney DM, Que FG. Preoperative anemia is associated with increased use of hospital resources in patients undergoing elective hepatectomy. Surgery. 2015;158:1027–36.

    Article  PubMed  Google Scholar 

  107. Baron DM, Hochrieser H, Posch M, Metnitz B, Rhodes A, Moreno RP, et al. Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients. Br J Anaesth. 2014;113(3):416–23.

    Article  CAS  PubMed  Google Scholar 

  108. Richards T, Musallam KM, Nassif J, Ghazeeri G, Seoud M, Gurusamy KS, et al. Impact of preoperative anaemia and blood transfusion on postoperative outcomes in gynaecological surgery. PLoS One. 2015;10(7):e0130861.

    Google Scholar 

  109. Jans O, Jorgensen C, Kehlet H, Johansson PI, Lundbeck Foundation Centre for Fast-track H, Knee Replacement Collaborative G. Role of preoperative anemia for risk of transfusion and postoperative morbidity in fast-track hip and knee arthroplasty. Transfusion. 2014;54(3):717–26.

    Article  PubMed  Google Scholar 

  110. Khanna MP, Hebert PC, Fergusson DA. Review of the clinical practice literature on patient characteristics associated with perioperative allogeneic red blood cell transfusion. Transfus Med Rev. 2003;17(2):110–9.

    Article  PubMed  Google Scholar 

  111. Sorensen B, Fries D. Emerging treatment strategies for trauma-induced coagulopathy. Br J Surg. 2012;99 Suppl 1:40–50.

    Article  PubMed  Google Scholar 

  112. Darlington DN, Delgado AV, Kheirabadi BS, Fedyk CG, Scherer MR, Pusateri AE, et al. Effect of hemodilution on coagulation and recombinant factor VIIa efficacy in human blood in vitro. J Trauma. 2011;71(5):1152–63.

    Article  CAS  PubMed  Google Scholar 

  113. Goodnough LT, Maniatis A, Earnshaw P, Benoni G, Beris P, Bisbe E, et al. Detection, evaluation, and management of preoperative anaemia in the elective orthopaedic surgical patient: NATA guidelines. Br J Anaesth. 2011;106(1):13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Segal JB, Dzik WH, Transfusion Medicine/Hemostasis Clinical Trials N. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion. 2005;45(9):1413–25.

    Article  PubMed  Google Scholar 

  115. Theusinger OM, Stein P, Levy JH. Point of care and factor concentrate-based coagulation algorithms. Transfus Med Hemother. 2015;42(2):115–21.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lance MD. A general review of major global coagulation assays: thrombelastography, thrombin generation test and clot waveform analysis. Thromb J. 2015;13:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sankarankutty A, Nascimento B, Teodoro da Luz L, Rizoli S. TEG(R) and ROTEM(R) in trauma: similar test but different results? World J Emerg Surg. 2012;7 Suppl 1:S3.

    Google Scholar 

  118. Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89(2):228–32.

    Article  CAS  PubMed  Google Scholar 

  119. Butwick AJ, Goodnough LT. Transfusion and coagulation management in major obstetric hemorrhage. Curr Opin Anaesthesiol. 2015;28(3):275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88(2):312–9.

    CAS  PubMed  Google Scholar 

  121. Nuttall GA, Oliver WC, Santrach PJ, Bryant S, Dearani JA, Schaff HV, et al. Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology. 2001;94(5):773–81. Discussion 5A–6A.

    Google Scholar 

  122. Ak K, Isbir CS, Tetik S, Atalan N, Tekeli A, Aljodi M, et al. Thromboelastography-based transfusion algorithm reduces blood product use after elective CABG: a prospective randomized study. J Card Surg. 2009;24(4):404–10.

    Article  PubMed  Google Scholar 

  123. Gorlinger K, Dirkmann D, Hanke AA, Kamler M, Kottenberg E, Thielmann M, et al. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011;115(6):1179–91.

    PubMed  Google Scholar 

  124. Finley A, Greenberg C. Review article: heparin sensitivity and resistance: management during cardiopulmonary bypass. Anesth Analg. 2013;116(6):1210–22.

    Article  CAS  PubMed  Google Scholar 

  125. Galli A, Palatnik A. What is the proper activated clotting time (ACT) at which to remove a femoral sheath after PCI? What are the best “protocols” for sheath removal? Crit Care Nurse. 2005;25(2):88–92, 94–5.

    Google Scholar 

  126. Afshari A, Wikkelso A, Brok J, Moller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011;(3):CD007871.

    Google Scholar 

  127. Wang SC, Shieh JF, Chang KY, Chu YC, Liu CS, Loong CC, et al. Thromboelastography-guided transfusion decreases intraoperative blood transfusion during orthotopic liver transplantation: randomized clinical trial. Transplant Proc. 2010;42(7):2590–3.

    Article  PubMed  Google Scholar 

  128. Hunt H, Stanworth S, Curry N, Woolley T, Cooper C, Ukoumunne O, et al. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst Rev. 2015;2:CD010438.

    Google Scholar 

  129. Vassallo R, Goldman M, Germain M, Lozano M, BEST Collaborative. Preoperative autologous blood donation: waning indications in an era of improved blood safety. Transfus Med Rev. 2015;29:268–75.

    Google Scholar 

  130. Brecher ME, Goodnough LT. The rise and fall of preoperative autologous blood donation (editorial). Transfusion. 2001;41:1459–62; Transfusion. 2002;42(12):1618–22.

    Google Scholar 

  131. Brecher ME, Goodnough LT. The rise and fall of preoperative autologous blood donation. Transfusion. 2001;41(12):1459–62.

    Article  CAS  PubMed  Google Scholar 

  132. Henry DA, Carless PA, Moxey AJ, O’Connell D, Forgie MA, Wells PS, et al. Pre-operative autologous donation for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2002;(2):CD003602.

    Google Scholar 

  133. Popovsky MA, Whitaker B, Arnold NL. Severe outcomes of allogeneic and autologous blood donation: frequency and characterization. Transfusion. 1995;35(9):734–7.

    Article  CAS  PubMed  Google Scholar 

  134. Goodnough LT, Brecher ME, Kanter MH, AuBuchon JP. Transfusion medicine. Second of two parts—blood conservation. N Engl J Med. 1999;340(7):525–33.

    Article  CAS  PubMed  Google Scholar 

  135. Etchason J, Petz L, Keeler E, Calhoun L, Kleinman S, Snider C, et al. The cost effectiveness of preoperative autologous blood donations. N Engl J Med. 1995;332(11):719–24.

    Article  CAS  PubMed  Google Scholar 

  136. Leal-Noval SR, Munoz M, Asuero M, Contreras E, Garcia-Erce JA, Llau JV, et al. Spanish Consensus Statement on alternatives to allogeneic blood transfusion: the 2013 update of the “Seville Document”. Blood Transfus. 2013;11(4):585–610.

    PubMed  PubMed Central  Google Scholar 

  137. British Committee for Standards in Haematology TTF, Boulton FE, James V. Guidelines for policies on alternatives to allogeneic blood transfusion. 1. Predeposit autologous blood donation and transfusion. Transfus Med. 2007;17(5):354–65.

    Google Scholar 

  138. Habler O, Schwenzer K, Zimmer K, Prager M, Konig U, Oppenrieder K, et al. Effects of standardized acute normovolemic hemodilution on intraoperative allogeneic blood transfusion in patients undergoing major maxillofacial surgery. Int J Oral Maxillofac Surg. 2004;33(5):467–75.

    Article  CAS  PubMed  Google Scholar 

  139. Shander A, Perelman S. The long and winding road of acute normovolemic hemodilution. Transfusion. 2006;46(7):1075–9.

    Article  PubMed  Google Scholar 

  140. Shander A, Rijhwani TS. Acute normovolemic hemodilution. Transfusion. 2004;44 Suppl 12:26S–34.

    Article  PubMed  Google Scholar 

  141. Carless P, Moxey A, O’Connell D, Henry D. Autologous transfusion techniques: a systematic review of their efficacy. Transfus Med. 2004;14(2):123–44.

    Article  CAS  PubMed  Google Scholar 

  142. Winch PD, Naguib AN, Bradshaw JR, Galantowicz M, Tobias JD. Decreasing the need for transfusion: infant cardiac surgery using hemodilution and recombinant factor VIIa. Pediatr Cardiol. 2013;34(1):119–24.

    Article  PubMed  Google Scholar 

  143. Xie Y, Shen S, Zhang J, Wang W, Zheng J. The efficacy, safety and cost-effectiveness of intra-operative cell salvage in high-bleeding-risk cardiac surgery with cardiopulmonary bypass: a prospective randomized and controlled trial. Int J Med Sci. 2015;12(4):322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Carless PA, Henry DA, Moxey AJ, O’Connell D, Brown T, Fergusson DA. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2010;(4):CD001888.

    Google Scholar 

  145. Milne ME, Yazer MH, Waters JH. Red blood cell salvage during obstetric hemorrhage. Obstet Gynecol. 2015;125(4):919–23.

    Article  PubMed  Google Scholar 

  146. Morikawa M, Kuramoto A, Nakayama M, Oguchi H, Hasegawa M, Funakoshi T, et al. Intraoperative red cell salvage during obstetric surgery in 50 Japanese women. Int J Gynaecol Obstet. 2015;128(3):256–9.

    Article  PubMed  Google Scholar 

  147. Liumbruno GM, Liumbruno C, Rafanelli D. Intraoperative cell salvage in obstetrics: is it a real therapeutic option? Transfusion. 2011;51(10):2244–56.

    Article  PubMed  Google Scholar 

  148. Li J, Sun SL, Tian JH, Yang K, Liu R, Li J. Cell salvage in emergency trauma surgery. Cochrane Database Syst Rev. 2015;1:CD007379.

    Google Scholar 

  149. Al-Khabori M, Al-Riyami AZ, Baskaran B, Siddiqi M, Al-Sabti H. Discriminatory power of the intraoperative cell salvage use in the prediction of platelet and plasma transfusion in patients undergoing cardiac surgery. Transfus Apher Sci. 2015;53:208–12.

    Article  PubMed  Google Scholar 

  150. Kelly PD, Parker SL, Mendenhall SK, Bible JE, Sivasubramaniam P, Shau DN, et al. Cost-effectiveness of cell saver in short-segment lumbar laminectomy and fusion (</=3 levels). Spine (Phila Pa 1976). 2015;40:E978–85.

    Google Scholar 

  151. Bonnar J, Goldberg A, Smith JA. Do pregnant women take their iron? Lancet. 1969;1(7592):457–8.

    Article  CAS  PubMed  Google Scholar 

  152. Habib F, Alabdin EH, Alenazy M, Nooh R. Compliance to iron supplementation during pregnancy. J Obstet Gynaecol. 2009;29(6):487–92.

    Article  CAS  PubMed  Google Scholar 

  153. Tolkien Z, Stecher L, Mander AP, Pereira DI, Powell JJ. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015;10(2):e0117383.

    Google Scholar 

  154. Litton E, Xiao J, Ho KM. Safety and efficacy of intravenous iron therapy in reducing requirement for allogeneic blood transfusion: systematic review and meta-analysis of randomised clinical trials. BMJ. 2013;347:f4822.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Auerbach M, Ballard H, Trout JR, McIlwain M, Ackerman A, Bahrain H, et al. Intravenous iron optimizes the response to recombinant human erythropoietin in cancer patients with chemotherapy-related anemia: a multicenter, open-label, randomized trial. J Clin Oncol. 2004;22(7):1301–7.

    Article  CAS  PubMed  Google Scholar 

  156. Goodnough LT, Shander A. Current status of pharmacologic therapies in patient blood management. Anesth Analg. 2013;116(1):15–34.

    Article  CAS  PubMed  Google Scholar 

  157. Chandler G, Harchowal J, Macdougall IC. Intravenous iron sucrose: establishing a safe dose. Am J Kidney Dis. 2001;38(5):988–91.

    Article  CAS  PubMed  Google Scholar 

  158. Bohlius J, Wilson J, Seidenfeld J, Piper M, Schwarzer G, Sandercock J, et al. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients. J Natl Cancer Inst. 2006;98(10):708–14.

    Article  CAS  PubMed  Google Scholar 

  159. Bennett CL, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Gleason KJ, et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA. 2008;299(8):914–24.

    Article  CAS  PubMed  Google Scholar 

  160. Wingerter SA, Keith AD, Schoenecker PL, Baca GR, Clohisy JC. Does tranexamic acid reduce blood loss and transfusion requirements associated with the periacetabular osteotomy? Clin Orthop Relat Res. 2015;473(8):2639–43.

    Google Scholar 

  161. Konig G, Hamlin BR, Waters JH. Topical tranexamic acid reduces blood loss and transfusion rates in total hip and total knee arthroplasty. J Arthroplasty. 2013;28(9):1473–6.

    Article  PubMed  Google Scholar 

  162. Cheriyan T, Maier 2nd SP, Bianco K, Slobodyanyuk K, Rattenni RN, Lafage V, et al. Efficacy of tranexamic acid on surgical bleeding in spine surgery: a meta-analysis. Spine J. 2015;15(4):752–61.

    Article  PubMed  Google Scholar 

  163. Wei W, Wei B. Comparison of topical and intravenous tranexamic acid on blood loss and transfusion rates in total hip arthroplasty. J Arthroplasty. 2014;29(11):2113–6.

    Article  PubMed  Google Scholar 

  164. Crescenzi G, Landoni G, Biondi-Zoccai G, Pappalardo F, Nuzzi M, Bignami E, et al. Desmopressin reduces transfusion needs after surgery: a meta-analysis of randomized clinical trials. Anesthesiology. 2008;109(6):1063–76.

    Article  CAS  PubMed  Google Scholar 

  165. Bershad EM, Suarez JI. Prothrombin complex concentrates for oral anticoagulant therapy-related intracranial hemorrhage: a review of the literature. Neurocrit Care. 2010;12(3):403–13.

    Article  CAS  PubMed  Google Scholar 

  166. Joseph B, Aziz H, Pandit V, Hays D, Kulvatunyou N, Yousuf Z, et al. Prothrombin complex concentrate versus fresh-frozen plasma for reversal of coagulopathy of trauma: is there a difference? World J Surg. 2014;38(8):1875–81.

    Article  PubMed  Google Scholar 

  167. Tran HA, Chunilal SD, Harper PL, Tran H, Wood EM, Gallus AS, et al. An update of consensus guidelines for warfarin reversal. Med J Aust. 2013;198(4):198–9.

    Article  PubMed  Google Scholar 

  168. Ranucci M, Baryshnikova E, Crapelli GB, Rahe-Meyer N, Menicanti L, Frigiola A, et al. Randomized, double-blinded, placebo-controlled trial of fibrinogen concentrate supplementation after complex cardiac surgery. J Am Heart Assoc. 2015;4(6), e002066.

    Google Scholar 

  169. Levy JH, Welsby I, Goodnough LT. Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy. Transfusion. 2014;54(5):1389–405. Quiz 8.

    Article  CAS  PubMed  Google Scholar 

  170. Logan AC, Yank V, Stafford RS. Off-label use of recombinant factor VIIa in U.S. hospitals: analysis of hospital records. Ann Intern Med. 2011;154(8):516–22.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Spotnitz WD, Burks S. Hemostats, sealants, and adhesives III: a new update as well as cost and regulatory considerations for components of the surgical toolbox. Transfusion. 2012;52(10):2243–55.

    Article  CAS  PubMed  Google Scholar 

  172. Carless PA, Henry DA, Anthony DM. Fibrin sealant use for minimising peri-operative allogeneic blood transfusion. Cochrane Database Syst Rev. 2003;(2):CD004171.

    Google Scholar 

  173. Ballard JL, Weaver FA, Singla NK, Chapman WC, Alexander WA. Safety and immunogenicity observations pooled from eight clinical trials of recombinant human thrombin. J Am Coll Surg. 2010;210(2):199–204.

    Article  PubMed  Google Scholar 

  174. Singla NK, Gasparis AP, Ballard JL, Baron JM, Butine MD, Pribble JP, et al. Immunogenicity and safety of re-exposure to recombinant human thrombin in surgical hemostasis. J Am Coll Surg. 2011;213(6):722–7.

    Article  PubMed  Google Scholar 

  175. Pass R. Cytomegalovirus. In: Knipe DM et al., editors. Fields virology, vol. 2, 4th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2001. p. 2675–705.

    Google Scholar 

  176. Adler SP. Transfusion-associated cytomegalovirus infections. Rev Infect Dis. 1983;5(6):977–93.

    Article  CAS  PubMed  Google Scholar 

  177. Ziemann M, Krueger S, Maier AB, Unmack A, Goerg S, Hennig H. High prevalence of cytomegalovirus DNA in plasma samples of blood donors in connection with seroconversion. Transfusion. 2007;47(11):1972–83.

    Article  PubMed  Google Scholar 

  178. Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis. 2006;43(9):1143–51.

    Article  PubMed  Google Scholar 

  179. Ziemann M, Hennig H. Prevention of transfusion-transmitted cytomegalovirus infections: which is the optimal strategy? Transfus Med Hemother. 2014;41(1):40–4.

    Article  PubMed  Google Scholar 

  180. Seed CR, Wong J, Polizzotto MN, Faddy H, Keller AJ, Pink J. The residual risk of transfusion-transmitted cytomegalovirus infection associated with leucodepleted blood components. Vox Sang. 2015;109:11–7.

    Article  CAS  PubMed  Google Scholar 

  181. Thiele T, Kruger W, Zimmermann K, Ittermann T, Wessel A, Steinmetz I, et al. Transmission of cytomegalovirus (CMV) infection by leukoreduced blood products not tested for CMV antibodies: a single-center prospective study in high-risk patients undergoing allogeneic hematopoietic stem cell transplantation (CME). Transfusion. 2011;51(12):2620–6.

    Article  PubMed  Google Scholar 

  182. Wu Y, Zou S, Cable R, Dorsey K, Tang Y, Hapip CA, et al. Direct assessment of cytomegalovirus transfusion-transmitted risks after universal leukoreduction. Transfusion. 2010;50(4):776–86.

    Article  PubMed  Google Scholar 

  183. Vamvakas EC. Is white blood cell reduction equivalent to antibody screening in preventing transmission of cytomegalovirus by transfusion? A review of the literature and meta-analysis. Transfus Med Rev. 2005;19(3):181–99.

    Article  PubMed  Google Scholar 

  184. Preiksaitis JK. The cytomegalovirus-“safe” blood product: is leukoreduction equivalent to antibody screening? Transfus Med Rev. 2000;14(2):112–36.

    Article  CAS  PubMed  Google Scholar 

  185. Narvios AB, Przepiorka D, Tarrand J, Chan KW, Champlin R, Lichtiger B. Transfusion support using filtered unscreened blood products for cytomegalovirus-negative allogeneic marrow transplant recipients. Bone Marrow Transplant. 1998;22(6):575–7.

    Article  CAS  PubMed  Google Scholar 

  186. Bowden RA, Slichter SJ, Sayers M, Weisdorf D, Cays M, Schoch G, et al. A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant. Blood. 1995;86(9):3598–603.

    CAS  PubMed  Google Scholar 

  187. Landaw EM, Kanter M, Petz LD. Safety of filtered leukocyte-reduced blood products for prevention of transfusion-associated cytomegalovirus infection. Blood. 1996;87(11):4910.

    CAS  PubMed  Google Scholar 

  188. DOH UK. SaBTO report of the Cytomegalovirus Steering Group. 2012. https://www.gov.uk/government/publications/sabto-report-of-the-cytomegalovirus-steering-group. Accessed 18 May 2015.

  189. Ratko TA, Cummings JP, Oberman HA, Crookston KP, DeChristopher PJ, Eastlund DT, et al. Evidence-based recommendations for the use of WBC-reduced cellular blood components. Transfusion. 2001;41(10):1310–9.

    Article  CAS  PubMed  Google Scholar 

  190. Malloy DaL, KS. Update on provision of CMV-reduced-risk cellular blood components. Bethesda, MD: American Association of Blood Banks; 2002. Contract No.: Association Bulletin #02-4.

    Google Scholar 

  191. UCSF. CMV-seronegative blood products. 2015. http://labmed.ucsf.edu/labmanual/mftlng-mtzn/test/info/4bb.html - CMVnegBloodProducts. Accessed 6 July 2015.

  192. Dwyre DM, Holland PV. Transfusion-associated graft-versus-host disease. Vox Sang. 2008;95(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  193. Frank SM, Wick EC, Dezern AE, Ness PM, Wasey JO, Pippa AC, et al. Risk-adjusted clinical outcomes in patients enrolled in a bloodless program. Transfusion. 2014;54(10 Pt 2):2668–77.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Carson JL, Noveck H, Berlin JA, Gould SA. Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion. Transfusion. 2002;42(7):812–8.

    Article  PubMed  Google Scholar 

  195. Shander A, Javidroozi M, Naqvi S, Aregbeyen O, Caylan M, Demir S, et al. An update on mortality and morbidity in patients with very low postoperative hemoglobin levels who decline blood transfusion (CME). Transfusion. 2014;54(10 Pt 2):2688–95. Quiz 7.

    Article  PubMed  Google Scholar 

  196. Berend K, Levi M. Management of adult Jehovah’s Witness patients with acute bleeding. Am J Med. 2009;122(12):1071–6.

    Article  PubMed  Google Scholar 

  197. Gohel MS, Bulbulia RA, Slim FJ, Poskitt KR, Whyman MR. How to approach major surgery where patients refuse blood transfusion (including Jehovah’s Witnesses). Ann R Coll Surg Engl. 2005;87(1):3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Muramoto O. Bioethical aspects of the recent changes in the policy of refusal of blood by Jehovah’s witnesses. BMJ. 2001;322(7277):37–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shahangian S, Snyder SR. Laboratory medicine quality indicators: a review of the literature. Am J Clin Pathol. 2009;131(3):418–31.

    Article  PubMed  Google Scholar 

  200. TJC. Improving America’s Hospitals—The Joint Commission’s Annual Report on quality and safety. Joint Commission; 2008.

    Google Scholar 

  201. Wagar EA, Stankovic AK, Raab S, Nakhleh RE, Walsh MK. Specimen labeling errors: a Q-probes analysis of 147 clinical laboratories. Arch Pathol Lab Med. 2008;132(10):1617–22.

    PubMed  Google Scholar 

  202. CAP. http://www.cap.org/apps/docs/reference/metrics_summary.pdf. Accessed 15 May 2015.

  203. Novis DA, Friedberg RC, Renner SW, Meier FA, Walsh MK. Operating room blood delivery turnaround time: a College of American Pathologists Q-Probe Study of 12647 units of blood components in 466 institutions. Arch Pathol Lab Med. 2002;126(8):909–14.

    PubMed  Google Scholar 

  204. Lin DM, Goldfinger D, Lu Q, Wallace B, Kosaka-Nguyen D, Wood A, et al. Measuring trade-offs that matter: assessing the impact of a new electronic cross-match policy on the turnaround time and the cross-match workload efficiency. Transfusion. 2014;54(12):3075–9.

    Article  PubMed  Google Scholar 

  205. Tuckfield A, Haeusler MN, Grigg AP, Metz J. Reduction of inappropriate use of blood products by prospective monitoring of transfusion request forms. Med J Aust. 1997;167(9):473–6.

    CAS  PubMed  Google Scholar 

  206. Silver H, Tahhan HR, Anderson J, Lachman M. A non-computer-dependent prospective review of blood and blood component utilization. Transfusion. 1992;32(3):260–5.

    Article  CAS  PubMed  Google Scholar 

  207. Novis DA, Renner S, Friedberg R, Walsh MK, Saladino AJ. Quality indicators of blood utilization: three College of American Pathologists Q-Probes studies of 12,288,404 red blood cell units in 1639 hospitals. Arch Pathol Lab Med. 2002;126(2):150–6.

    PubMed  Google Scholar 

  208. Collins RA, Wisniewski MK, Waters JH, Triulzi DJ, Yazer MH. Effectiveness of multiple initiatives to reduce blood component wastage. Am J Clin Pathol. 2015;143(3):329–35.

    Article  PubMed  Google Scholar 

  209. Whitney GM, Woods MC, France DJ, Austin TM, Deegan RJ, Paroskie A, et al. Reducing intraoperative red blood cell unit wastage in a large academic medical center. Transfusion. 2015;55(11):2752–8.

    Google Scholar 

  210. Mali SB. Blood substitutes: the need of hour. J Craniofac Surg. 2015;26(4):1006–8.

    Article  PubMed  Google Scholar 

  211. Chen JY, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics (Sao Paulo). 2009;64(8):803–13.

    Article  Google Scholar 

  212. Clark Jr LC, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science. 1966;152(730):1755–6.

    Article  CAS  PubMed  Google Scholar 

  213. Palmer AF, Intaglietta M. Blood substitutes. Annu Rev Biomed Eng. 2014;16:77–101.

    Article  CAS  PubMed  Google Scholar 

  214. Winslow RM. Current status of blood substitute research: towards a new paradigm. J Intern Med. 2003;253(5):508–17.

    Article  CAS  PubMed  Google Scholar 

  215. Kluger R. Red cell substitutes from hemoglobin—do we start all over again? Curr Opin Chem Biol. 2010;14(4):538–43.

    Article  CAS  PubMed  Google Scholar 

  216. Chang TM. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):418–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304–12.

    Article  CAS  PubMed  Google Scholar 

  218. Weiskopf RB, Silverman TA. Balancing potential risks and benefits of hemoglobin-based oxygen carriers. Transfusion. 2013;53(10):2327–33.

    PubMed  Google Scholar 

  219. Raff JP, Dobson CE, Tsai HM. Transfusion of polymerised human haemoglobin in a patient with severe sickle-cell anaemia. Lancet. 2002;360(9331):464–5.

    Article  PubMed  Google Scholar 

  220. Posluszny Jr JA, Napolitano LM. How do we treat life-threatening anemia in a Jehovah’s Witness patient? Transfusion. 2014;54(12):3026–34.

    Article  CAS  PubMed  Google Scholar 

  221. ClinicalTrials.gov. Safety and pharmacokinetics of SANGUINATE™ in sickle cell disease (SCD) patients. 2015. https://clinicaltrials.gov/ct2/show/NCT01374165. Accessed 24 June 2015.

  222. ClinicalTrials.gov. Study to assess the safety and impact on humoral sensitization of SANGUINATE in patients with end stage renal disease. 2015. https://clinicaltrials.gov/ct2/show/NCT02437422. Accessed 23 July 2015.

  223. ClinicalTrials.gov. Study of SANGUINATE™ in the treatment of sickle cell disease patients with vaso-occlusive crisis. 2015. https://clinicaltrials.gov/ct2/show/NCT02411708. Accessed 23 July 2015.

  224. Bloch EM, Vermeulen M, Murphy E. Blood transfusion safety in Africa: a literature review of infectious disease and organizational challenges. Transfus Med Rev. 2012;26(2):164–80.

    Article  PubMed  Google Scholar 

  225. Bloch EM, Shah A, Kaidarova Z, Laperche S, Lefrere JJ, van Hasselt J, et al. A pilot external quality assurance study of transfusion screening for HIV, HCV and HBsAG in 12 African countries. Vox Sang. 2014;107(4):333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Laperche S, Francophone African Group for Research in Blood Transfusion. Multinational assessment of blood-borne virus testing and transfusion safety on the African continent. Transfusion. 2012;53(4):816–26.

    Google Scholar 

  227. Hassall O, Maitland K, Pole L, Mwarumba S, Denje D, Wambua K, et al. Bacterial contamination of pediatric whole blood transfusions in a Kenyan hospital. Transfusion. 2009;49(12):2594–8.

    Google Scholar 

  228. LaPar DJ, Crosby IK, Ailawadi G, Ad N, Choi E, Spiess BD, et al. Blood product conservation is associated with improved outcomes and reduced costs after cardiac surgery. J Thorac Cardiovasc Surg. 2013;145(3):796–803. Discussion 4.

    Google Scholar 

  229. Freedman J, Luke K, Escobar M, Vernich L, Chiavetta JA. Experience of a network of transfusion coordinators for blood conservation (Ontario Transfusion Coordinators [ONTraC]). Transfusion. 2008;48(2):237–50.

    PubMed  Google Scholar 

  230. Pearse BL, Smith I, Faulke D, Wall D, Fraser JF, Ryan EG, et al. Protocol guided bleeding management improves cardiac surgery patient outcomes. Vox Sang. 2015;109(3):267–79.

    Google Scholar 

  231. Haas T, Goobie S, Spielmann N, Weiss M, Schmugge M. Improvements in patient blood management for pediatric craniosynostosis surgery using a ROTEM(®)-assisted strategy—feasibility and costs. Paediatr Anaesth. 2014;24(7):774–80.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Jacquot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jacquot, C., Bloch, E.M. (2017). Patient Blood Management. In: Lewandrowski, K., Sluss, P. (eds) Utilization Management in the Clinical Laboratory and Other Ancillary Services. Springer, Cham. https://doi.org/10.1007/978-3-319-34199-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34199-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34197-2

  • Online ISBN: 978-3-319-34199-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics