Skip to main content

Systemic Inflammation: A New Prognostic Domain and Source of Therapeutic Targets in Hepatocellular Carcinoma

  • Chapter
  • First Online:
Hepatocellular Carcinoma

Part of the book series: Current Clinical Oncology ((CCO))

  • 1979 Accesses

Abstract

The pathogenesis of hepatocellular carcinoma (HCC) strongly relates to inflammation with chronic up-regulation of pro-inflammatory mediators standing as a potential unifying mechanism to justify the origin and progression of HCC independent of aetiology. Activation of the diverse pro-inflammatory mediators either within the tumour or its microenvironment is part of an active cross-talk between the progressive HCC and the host, which is known to influence clinical outcomes including recurrence after radical treatments and long-term survival. A number of clinical biomarkers to measure the severity of cancer-related inflammation are now available, most of which emerge from routine blood parameters including bone marrow function, albuminaemia and C-reactive protein. Cancer-related inflammation is an accurate prognostic indicator in both curative and palliative setting of care in HCC and a potential source of novel therapeutic strategies in advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.

    Article  PubMed  Google Scholar 

  3. Kocabayoglu P, Friedman SL. Cellular basis of hepatic fibrosis and its role in inflammation and cancer. Front Biosci (Schol Ed). 2013;5:217–30.

    Article  Google Scholar 

  4. Maki A, Kono H, Gupta M, et al. Predictive power of biomarkers of oxidative stress and inflammation in patients with hepatitis C virus-associated hepatocellular carcinoma. Ann Surg Oncol. 2007;14(3):1182–90.

    Article  PubMed  Google Scholar 

  5. Cornella H, Alsinet C, Villanueva A. Molecular pathogenesis of hepatocellular carcinoma. Alcohol Clin Exp Res. 2011;35(5):821–5.

    Article  CAS  PubMed  Google Scholar 

  6. Lade A, Noon LA, Friedman SL. Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer. Curr Opin Oncol. 2014;26(1):100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–27.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Budhu A, Wang XW. The role of cytokines in hepatocellular carcinoma. J Leukoc Biol. 2006;80(6):1197–213.

    Article  CAS  PubMed  Google Scholar 

  9. Budhu A, Forgues M, Ye QH, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10(2):99–111.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou H, Huang H, Shi J, et al. Prognostic value of interleukin 2 and interleukin 15 in peritumoral hepatic tissues for patients with hepatitis B-related hepatocellular carcinoma after curative resection. Gut. 2010;59(12):1699–708.

    Article  PubMed  Google Scholar 

  11. Beckebaum S, Zhang X, Chen X, et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res. 2004;10(21):7260–9.

    Article  CAS  PubMed  Google Scholar 

  12. Arihara F, Mizukoshi E, Kitahara M, et al. Increase in CD14+ HLA-DR/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62(8):1421–30.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang JP, Yan J, Xu J, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 2009;50(5):980–9.

    Article  CAS  PubMed  Google Scholar 

  14. Aino H, Sumie S, Niizeki T, et al. Clinical characteristics and prognostic factors for advanced hepatocellular carcinoma with extrahepatic metastasis. Mol Clin Oncol. 2014;2(3):393–8.

    PubMed  PubMed Central  Google Scholar 

  15. Hwang SJ, Luo JC, Li CP, et al. Thrombocytosis: a paraneoplastic syndrome in patients with hepatocellular carcinoma. World J Gastroenterol. 2004;10(17):2472–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nagai S, Abouljoud MS, Kazimi M, Brown KA, Moonka D, Yoshida A. Peritransplant lymphopenia is a novel prognostic factor in recurrence of hepatocellular carcinoma after liver transplantation. Transplantation. 2014;97(6):694–701.

    Article  PubMed  Google Scholar 

  17. Sieghart W, Pinter M, Hucke F, et al. Single determination of C-reactive protein at the time of diagnosis predicts long-term outcome of patients with hepatocellular carcinoma. Hepatology. 2013;57(6):2224–34.

    Article  CAS  PubMed  Google Scholar 

  18. Hao K, Luk JM, Lee NP, et al. Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters. BMC Cancer. 2009;9:389.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Facciorusso A, Del Prete V, Antonino M, et al. Serum ferritin as a new prognostic factor in hepatocellular carcinoma patients treated with radiofrequency ablation. J Gastroenterol Hepatol. 2014.

    Google Scholar 

  20. Kinoshita A, Onoda H, Imai N, et al. Elevated plasma fibrinogen levels are associated with a poor prognosis in patients with hepatocellular carcinoma. Oncology. 2013;85(5):269–77.

    Article  CAS  PubMed  Google Scholar 

  21. Kato A, Tsuji T, Sakao Y, et al. A comparison of systemic inflammation-based prognostic scores in patients on regular hemodialysis. Nephron Extra. 2013;3(1):91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pinato DJ, Stebbing J, Ishizuka M, et al. A novel and validated prognostic index in hepatocellular carcinoma: the inflammation based index (IBI). J Hepatol. 2012;57(5):1013–20.

    Article  PubMed  Google Scholar 

  23. Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013;88(1):218–30.

    Article  PubMed  Google Scholar 

  24. McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013;39(5):534–40.

    Article  PubMed  Google Scholar 

  25. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Zhang Q, Chang W, Du Y, Zhang H, Cao G. Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. Eur J Cancer. 2012;48(13):1977–87.

    Article  CAS  PubMed  Google Scholar 

  27. Scapini P, Morini M, Tecchio C, et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol. 2004;172(8):5034–40.

    Article  CAS  PubMed  Google Scholar 

  28. Kuang DM, Zhao Q, Wu Y, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 2011;54(5):948–55.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou SL, Dai Z, Zhou ZJ, et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 2012;56(6):2242–54.

    Article  CAS  PubMed  Google Scholar 

  30. Imai Y, Kubota Y, Yamamoto S, et al. Neutrophils enhance invasion activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells: an in vitro study. J Gastroenterol Hepatol. 2005;20(2):287–93.

    Article  CAS  PubMed  Google Scholar 

  31. Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mazzocca A, Antonaci S, Giannelli G. The TGF-beta signaling pathway as a pharmacological target in a hepatocellular carcinoma. Curr Pharm Des. 2012;18(27):4148–54.

    Article  CAS  PubMed  Google Scholar 

  33. Mano Y, Shirabe K, Yamashita Y, et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepatectomy for hepatocellular carcinoma: a retrospective analysis. Ann Surg. 2013;258(2):301–5.

    Article  PubMed  Google Scholar 

  34. Hagemann T, Wilson J, Burke F, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006;176(8):5023–32.

    Article  CAS  PubMed  Google Scholar 

  35. Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69(20):8067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan T, Wiltrout RH, Weiss JM. Immunotherapeutic modulation of the suppressive liver and tumor microenvironments. Int Immunopharmacol. 2011;11(7):879–89.

    Article  CAS  PubMed  Google Scholar 

  37. Shirabe K, Mano Y, Muto J, et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today. 2012;42(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kapanadze T, Gamrekelashvili J, Ma C, et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol. 2013;59(5):1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15(11):e493–503.

    Article  PubMed  Google Scholar 

  40. Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.

    Article  CAS  PubMed  Google Scholar 

  41. Carr BI, Guerra V. HCC and its microenvironment. Hepatogastroenterology. 2013;60(126):1433–7.

    CAS  PubMed  Google Scholar 

  42. Kao WY, Chiou YY, Hung HH, et al. Risk factors for long-term prognosis in hepatocellular carcinoma after radiofrequency ablation therapy: the clinical implication of aspartate aminotransferase-platelet ratio index. Eur J Gastroenterol Hepatol. 2011;23(6):528–36.

    CAS  PubMed  Google Scholar 

  43. Hung HH, Su CW, Lai CR, et al. Fibrosis and AST to platelet ratio index predict post-operative prognosis for solitary small hepatitis B-related hepatocellular carcinoma. Hepatol Int. 2010;4(4):691–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shen SL, Fu SJ, Chen B, et al. Preoperative aspartate aminotransferase to platelet ratio is an independent prognostic factor for hepatitis B-induced hepatocellular carcinoma after hepatic resection. Ann Surg Oncol. 2014;21(12):3802–9.

    Article  PubMed  Google Scholar 

  45. Carr BI, Lin CY, Lu SN. Platelet-related phenotypic patterns in hepatocellular carcinoma patients. Semin Oncol. 2014;41(3):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carr BI, Cavallini A, D’Alessandro R, et al. Platelet extracts induce growth, migration and invasion in human hepatocellular carcinoma in vitro. BMC Cancer. 2014;14:43.

    Article  PubMed  PubMed Central  Google Scholar 

  47. D’Alessandro R, Refolo MG, Lippolis C, et al. Antagonism of Sorafenib and Regorafenib actions by platelet factors in hepatocellular carcinoma cell lines. BMC Cancer. 2014;14:351.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sitia G. Platelets promote liver immunopathology contributing to hepatitis B virus-mediated hepatocarcinogenesis. Semin Oncol. 2014;41(3):402–5.

    Article  CAS  PubMed  Google Scholar 

  49. Carr BI, Guerra V. Thrombocytosis and hepatocellular carcinoma. Dig Dis Sci. 2013;58(6):1790–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kinoshita A, Onoda H, Imai N, et al. Comparison of the prognostic value of inflammation-based prognostic scores in patients with hepatocellular carcinoma. Br J Cancer. 2012;107(6):988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu B, Yang XR, Xu Y, et al. Systemic immune-inflammation index (SII) predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res. 2014.

    Google Scholar 

  52. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111(12):1805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pinato DJ, Bains J, Irkulla S, et al. Advanced age influences the dynamic changes in circulating C-reactive protein following injury. J Clin Pathol. 2013;66(8):695–9.

    Article  PubMed  Google Scholar 

  54. Su HX, Zhou HH, Wang MY, et al. Mutations of C-reactive protein (CRP)-286 SNP, APC and p53 in colorectal cancer: implication for a CRP-Wnt crosstalk. PLoS ONE. 2014;9(7):e102418.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kondo S, Ueno H, Hosoi H, et al. Clinical impact of pentraxin family expression on prognosis of pancreatic carcinoma. Br J Cancer. 2013;109(3):739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laird BJ, McMillan DC, Fayers P, et al. The systemic inflammatory response and its relationship to pain and other symptoms in advanced cancer. Oncologist. 2013;18(9):1050–5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pinato DJ, Karamanakos G, Arizumi T, et al. Dynamic changes of the inflammation-based index predict mortality following chemoembolisation for hepatocellular carcinoma: a prospective study. Aliment Pharmacol Ther. 2014;40(11–12):1270–81.

    Article  CAS  PubMed  Google Scholar 

  58. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(3):329–38.

    Article  CAS  PubMed  Google Scholar 

  59. Chen XP, Qiu FZ, Wu ZD, Zhang ZW, Huang ZY, Chen YF. Long-term outcome of resection of large hepatocellular carcinoma. Br J Surg. 2006;93(5):600–6.

    Article  PubMed  Google Scholar 

  60. Sherman M. Recurrence of hepatocellular carcinoma. N Engl J Med. 2008;359(19):2045–7.

    Article  CAS  PubMed  Google Scholar 

  61. Dan J, Zhang Y, Peng Z, et al. Postoperative neutrophil-to-lymphocyte ratio change predicts survival of patients with small hepatocellular carcinoma undergoing radiofrequency ablation. PLoS ONE. 2013;8(3):e58184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen TM, Lin CC, Huang PT, Wen CF. Neutrophil-to-lymphocyte ratio associated with mortality in early hepatocellular carcinoma patients after radiofrequency ablation. J Gastroenterol Hepatol. 2012;27(3):553–61.

    Article  CAS  PubMed  Google Scholar 

  63. Fujiwara Y, Shiba H, Furukawa K, et al. Glasgow prognostic score is related to blood transfusion requirements and post-operative complications in hepatic resection for hepatocellular carcinoma. Anticancer Res. 2010;30(12):5129–36.

    CAS  PubMed  Google Scholar 

  64. Horino K, Beppu T, Kuroki H, et al. Glasgow Prognostic Score as a useful prognostic factor after hepatectomy for hepatocellular carcinoma. Int J Clin Oncol. 2013;18(5):829–38.

    Article  PubMed  Google Scholar 

  65. Ishizuka M, Kubota K, Kita J, Shimoda M, Kato M, Sawada T. Impact of an inflammation-based prognostic system on patients undergoing surgery for hepatocellular carcinoma: a retrospective study of 398 Japanese patients. Am J Surg. 2012;203(1):101–6.

    Article  PubMed  Google Scholar 

  66. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693–9.

    Article  CAS  PubMed  Google Scholar 

  67. Klintmalm GB. Liver transplantation for hepatocellular carcinoma: a registry report of the impact of tumor characteristics on outcome. Ann Surg. 1998;228(4):479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao FY, Ferrell L, Bass NM, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology. 2001;33(6):1394–403.

    Article  CAS  PubMed  Google Scholar 

  69. Shindoh J, Sugawara Y, Nagata R, et al. Evaluation methods for pretransplant oncologic markers and their prognostic impacts in patient undergoing living donor liver transplantation for hepatocellular carcinoma. Transpl Int. 2014;27(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  70. Llovet JM, Real MI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–9.

    Article  PubMed  Google Scholar 

  71. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42(5):1208–36.

    Article  PubMed  Google Scholar 

  72. Bolondi L, Burroughs A, Dufour JF, et al. Heterogeneity of patients with intermediate (BCLC B) Hepatocellular Carcinoma: proposal for a subclassification to facilitate treatment decisions. Semin Liver Dis. 2012;32(4):348–59.

    CAS  PubMed  Google Scholar 

  73. Kadalayil L, Benini R, Pallan L, et al. A simple prognostic scoring system for patients receiving transarterial embolisation for hepatocellular cancer. Ann Oncol. 2013;24(10):2565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hucke F, Sieghart W, Pinter M, et al. The ART-strategy: sequential assessment of the ART score predicts outcome of patients with hepatocellular carcinoma re-treated with TACE. J Hepatol. 2014;60(1):118–26.

    Article  PubMed  Google Scholar 

  75. Adhoute X, Penaranda G, Naude S, et al. Retreatment with TACE: the ABCR SCORE, an aid to the decision-making process. J Hepatol. 2014.

    Google Scholar 

  76. Hucke F, Pinter M, Graziadei I, et al. How to STATE suitability and START transarterial chemoembolization in patients with intermediate stage hepatocellular carcinoma. J Hepatol. 2014;61(6):1287–96.

    Article  PubMed  Google Scholar 

  77. Pinato DJ, Sharma R. An inflammation-based prognostic index predicts survival advantage after transarterial chemoembolization in hepatocellular carcinoma. Transl Res. 2012;160(2):146–52.

    Article  PubMed  Google Scholar 

  78. Pinato DJ, Arizumi T, Allara E, et al. Validation of the hepatoma arterial embolization prognostic score in European and Asian populations and proposed modification. Clin Gastroenterol Hepatol. 2014 (the official clinical practice journal of the American Gastroenterological Association).

    Google Scholar 

  79. Adhoute X, Penaranda G, Naude S, et al. Retreatment with TACE: the ABCR SCORE, an aid to the decision-making process. J Hepatol. 2015;62(4):855–62.

    Article  PubMed  Google Scholar 

  80. Morimoto M, Numata K, Moriya S, et al. Inflammation-based prognostic score for hepatocellular carcinoma patients on sorafenib treatment. Anticancer Res. 2012;32(2):619–23.

    CAS  PubMed  Google Scholar 

  81. Zheng YB, Zhao W, Liu B, et al. The blood neutrophil-to-lymphocyte ratio predicts survival in patients with advanced hepatocellular carcinoma receiving sorafenib. Asian Pac J Cancer Prev. 2013;14(9):5527–31.

    Article  PubMed  Google Scholar 

  82. Kacevska M, Downes MR, Sharma R, et al. Extrahepatic cancer suppresses nuclear receptor-regulated drug metabolism. Clin Cancer Res. 2011;17(10):3170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma R, Zhang W, Tang K, et al. Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat Commun. 2013;4:2508.

    PubMed  Google Scholar 

  84. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13(5):518–27.

    Article  CAS  PubMed  Google Scholar 

  85. Gala MK, Chan AT. Molecular pathways: aspirin and Wnt signaling-A molecularly targeted approach to cancer prevention and treatment. Clin Cancer Res. 2014.

    Google Scholar 

  86. Sitia G, Aiolfi R, Di Lucia P, et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc Natl Acad Sci USA. 2012;109(32):E2165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kondo M, Yamamoto H, Nagano H, et al. Increased expression of COX-2 in non tumor liver tissue is associated with shorter disease-free survival in patients with hepatocellular carcinoma. Clin Cancer Res. 1999;5(12):4005–12.

    CAS  PubMed  Google Scholar 

  88. Song R, Song H, Liang Y, et al. Reciprocal activation between ATPase inhibitory factor 1 and NF-kappaB drives hepatocellular carcinoma angiogenesis and metastasis. Hepatology. 2014;60(5):1659–73.

    Article  CAS  PubMed  Google Scholar 

  89. Seufert BL, Poole EM, Whitton J, et al. IkappaBKbeta and NFkappaB1, NSAID use and risk of colorectal cancer in the Colon Cancer Family Registry. Carcinogenesis. 2013;34(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  90. Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer. 2013;2(3–4):367–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296(5573):1653–5.

    Article  CAS  Google Scholar 

  92. Hurwitz H, Uppal N, Wagner SA, et al. A randomized double-blind phase 2 study of ruxolitinib (RUX) or placebo (PBO) with capecitabine (CAPE) as second-line therapy in patients (pts) with metastatic pancreatic cancer (mPC). In: ASCO, editor. ASCO annual meeting; 2014. Chicago, USA; 2014.

    Google Scholar 

  93. Giannelli G, Mazzocca A, Fransvea E, Lahn M, Antonaci S. Inhibiting TGF-beta signaling in hepatocellular carcinoma. Biochim Biophys Acta. 2011;1815(2):214–23.

    CAS  PubMed  Google Scholar 

  94. Rodon J, Carducci M, Sepulveda-Sanchez JM, et al. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-beta receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest New Drugs. 2015;33(2):357–70.

    Article  CAS  PubMed  Google Scholar 

  95. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60(5):1776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sangro B, Gomez-Martin C, de la Mata M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  97. Fecher LA, Agarwala SS, Hodi FS, Weber JS. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist. 2013;18(6):733–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raoul JL, Sangro B, Forner A, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. Cancer Treat Rev. 2011;37(3):212–20.

    Article  PubMed  Google Scholar 

  99. Sieghart W, Hucke F, Peck-Radosavljevic M. Transarterial chemoembolization: modalities, indication, and patient selection. J Hepatol. 2015.

    Google Scholar 

  100. Gillani TB, Rawling T, Murray M. Cytochrome P450-mediated biotransformation of sorafenib and its N-oxide metabolite: implications for cell viability and human toxicity. Chem Res Toxicol. 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Pinato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinato, D.J., Sharma, R. (2016). Systemic Inflammation: A New Prognostic Domain and Source of Therapeutic Targets in Hepatocellular Carcinoma. In: Carr, B. (eds) Hepatocellular Carcinoma. Current Clinical Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-34214-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34214-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34212-2

  • Online ISBN: 978-3-319-34214-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics