Skip to main content

Glucose and Amino Acid and Their Roles in Placentation

  • Chapter
  • First Online:
Early Nutrition and Lifestyle Factors
  • 770 Accesses

Abstract

The “Fetal origins hypothesis” states that individual born small due to maternal malnutrition is predisposed to adult disease. The hypothesis is skewed more towards malnourished mothers and does not specify to include placental factor. In contrast, poor placentation mainly due to inadequate vascular adaptation at the utero-placental interface is far more reasonable cause of reduced fetal growth in adequately nourished populations (Henriksen and Clausen 2002). Now, substantial evidences exist that suboptimal maternal nutrition can regulate newborn in both the cases. Immediate impact of optimum maternal diet or its deviation on placental growth and fetal birth weight would be the key to understand their beneficial effect on placentation process. The availability and supply of nutrients to the developing fetus depend on maternal nutritional status which in turn depends on their nutrient stores, dietary intake, and obligatory requirements during pregnancy (Ramakrishnan et al. 2012). During development, there are critical periods when system and organs undergo maturation; those stages are susceptible to be programmed. The pregnancy-specific stages that span from the preconception to the birth are subjected to be influenced by macro and micronutrients that affect both maternal health and fetus development subsequently. Data so far highlighted the importance of nutrition during pregnancy typically focusing on the second and/or the third trimester by which time major organogenesis would have been completed. However, nutritional impact just before conception and/or during first trimester, when women are typically unaware of their pregnancy status, is scanty. It is likely that preconception, conception, implantation, organogenesis, and placentation will be influenced by status of the maternal periconceptional nutrition. These effects may lead to regulate overall health of childbearing women, their reproductive potential, and birth outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta, O., Ramirez, V. I., Lager, S., Gaccioli, F., Dudley, D. J., Powell, T. L., & Jansson, T. (2015). Increased glucose and placental GLUT-1 in large infants of obese nondiabetic mothers. American Journal of Obstetrics and Gynecology, 212, 227.e1–227.e7.

    Article  CAS  Google Scholar 

  • Aiko, Y., Askew, D. J., Aramaki, S., Myoga, M., Tomonaga, C., Hachisuga, T., Suga, R., Kawamoto, T., Tsuji, M., & Shibata, E. (2014). Differential levels of amino acid transporters System L and ASCT2, and the mTOR protein in placenta of preeclampsia and IUGR. BMC Pregnancy and Childbirth, 14, 181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida, F. R., Silva, G. A., Fiuza, A. T., Chianca, D. A., Jr., Ferreira, A. J., & Chiarini-Garcia, H. (2012). Gestational and postnatal protein deficiency affects postnatal development and histomorphometry of liver, kidneys, and ovaries of female rats’ offspring. Applied Physiology, Nutrition, and Metabolism, 37, 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Alpoim, P. N., Godoi, L. C., Freitas, L. G., Gomes, K. B., & Dusse, L. M. (2013). Assessment of L-arginine asymmetric 1 dimethyl (ADMA) in early-onset and late-onset (severe) preeclampsia. Nitric Oxide, 33, 81–82.

    Article  CAS  PubMed  Google Scholar 

  • Barros, L. F., Yudilevich, D. L., Jarvis, S. M., Beaumont, N., & Baldwin, S. A. (1995). Quantitation and immunolocalization of glucose transporters in the human placenta. Placenta, 16, 623–633.

    Article  CAS  PubMed  Google Scholar 

  • Basak, S., Das, M. K., Srinivas, V., & Duttaroy, A. K. (2015). The interplay between glucose and fatty acids on tube formation and fatty acid uptake in the first trimester trophoblast cells, HTR8/SVneo. Molecular and Cellular Biochemistry, 401, 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, M. U., Schneider, H., Malek, A., Palta, V., Surbek, D. V., Sager, R., Zamudio, S., & Illsley, N. P. (2014). Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I). PLoS One, 9, e106037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann, M. U., Zamudio, S., & Illsley, N. P. (2007). Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. American Journal of Physiology – Cellular Physiology, 293, C477–C485.

    Article  CAS  Google Scholar 

  • Bax, B. E., & Bloxam, D. L. (1997). Energy metabolism and glycolysis in human placental trophoblast cells during differentiation. Biochimica et Biophysica Acta, 1319, 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Bazer, F. W., Johnson, G. A., & Wu, G. (2015). Amino acids and conceptus development during the peri-implantation period of pregnancy. Advances in Experimental Medicine and Biology, 843, 23–52.

    Article  PubMed  Google Scholar 

  • Belkacemi, L., Lash, G. E., Macdonald-Goodfellow, S. K., Caldwell, J. D., & Graham, C. H. (2005). Inhibition of human trophoblast invasiveness by high glucose concentrations. The Journal of Clinical Endocrinology and Metabolism, 90, 4846–4851.

    Article  CAS  PubMed  Google Scholar 

  • Burton, G. J., & Fowden, A. L. (2012). Review: The placenta and developmental programming: Balancing fetal nutrient demands with maternal resource allocation. Placenta, 33(Suppl), S23–S27.

    Article  PubMed  Google Scholar 

  • Cawyer, C. R., Horvat, D., Leonard, D., Allen, S. R., Jones, R. O., Zawieja, D. C., Kuehl, T. J., & Uddin, M. N. (2014). Hyperglycemia impairs cytotrophoblast function via stress signaling. American Journal of Obstetrics and Gynecology, 211, 541.e1–541.e8.

    Article  Google Scholar 

  • Chang, S.-C., & Vivian Yang, W.-C. (2013). Hyperglycemia induces altered expressions of angiogenesis associated molecules in the trophoblast. Evidence-Based Complementary and Alternative Medicine, 2013, 457971–457982.

    Google Scholar 

  • Cleal, J. K., Day, P. E., Simner, C. L., Barton, S. J., Mahon, P. A., Inskip, H. M., Godfrey, K. M., Hanson, M. A., Cooper, C., Lewis, R. M., & Harvey, N. C. (2015). Placental amino acid transport may be regulated by maternal vitamin D and vitamin D-binding protein: Results from the Southampton Women’s Survey. British Journal of Nutrition, 113, 1903–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia-Branco, A., Azevedo, C. F., Araujo, J. R., Guimaraes, J. T., Faria, A., Keating, E., & Martel, F. (2015). Xanthohumol impairs glucose uptake by a human first-trimester extravillous trophoblast cell line (HTR-8/SVneo cells) and impacts the process of placentation. Molecular Human Reproduction, 21(10), 803–815.

    Article  PubMed  Google Scholar 

  • Demir, R., Kayisli, U. A., Seval, Y., Celik-Ozenci, C., Korgun, E. T., Demir-Weusten, A. Y., & Huppertz, B. (2004). Sequential expression of VEGF and its receptors in human placental villi during very early pregnancy: Differences between placental vasculogenesis and angiogenesis. Placenta, 25, 560–572.

    Article  CAS  PubMed  Google Scholar 

  • Desforges, M., Greenwood, S. L., Glazier, J. D., Westwood, M., & Sibley, C. P. (2010). The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast. Biochemical and Biophysical Research Communications, 398, 130–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Simone, N., Di Nicuolo, F., Marzioni, D., Castellucci, M., Sanguinetti, M., D’Lppolito, S., & Caruso, A. (2009). Resistin modulates glucose uptake and glucose transporter-1 (GLUT-1) expression in trophoblast cells. Journal of Cellular and Molecular Medicine, 13, 388–397.

    Article  PubMed  Google Scholar 

  • Dilworth, M. R., & Sibley, C. P. (2013). Review: Transport across the placenta of mice and women. Placenta, 34(Suppl), S34–S39.

    Article  CAS  PubMed  Google Scholar 

  • Economides, D. L., Nicolaides, K. H., & Campbell, S. (1990). Relation between maternal-to-fetal blood glucose gradient and uterine and umbilical Doppler blood flow measurements. British Journal of Obstetrics and Gynaecology, 97, 543–544.

    Article  CAS  PubMed  Google Scholar 

  • Ericsson, A., Hamark, B., Jansson, N., Johansson, B. R., Powell, T. L., & Jansson, T. (2005). Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288, R656–R662.

    Article  CAS  PubMed  Google Scholar 

  • Esterman, A., Greco, M. A., Mitani, Y., Finlay, T. H., Ismail-Beigi, F., & Dancis, J. (1997). The effect of hypoxia on human trophoblast in culture: Morphology, glucose transport and metabolism. Placenta, 18, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, R. V., Gombar, F. M., da Silva Faria, T., Costa, W. S., Sampaio, F. J., & da Fonte Ramos, C. (2010). Metabolic programming of ovarian angiogenesis and folliculogenesis by maternal malnutrition during lactation. Fertility and Sterility, 93, 2572–2580.

    Article  CAS  PubMed  Google Scholar 

  • Frolova, A., Flessner, L., Chi, M., Kim, S. T., Foyouzi-Yousefi, N., & Moley, K. H. (2009). Facilitative glucose transporter type 1 is differentially regulated by progesterone and estrogen in murine and human endometrial stromal cells. Endocrinology, 150, 1512–1520.

    Article  CAS  PubMed  Google Scholar 

  • Frolova, A. I., & Moley, K. H. (2011). Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology, 152, 2123–2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima, K., Miyamoto, S., Tsukimori, K., Kobayashi, H., Seki, H., Takeda, S., Kensuke, E., Ohtani, K., Shibuya, M., & Nakano, H. (2005). Tumor necrosis factor and vascular endothelial growth factor induce endothelial integrin repertories, regulating endovascular differentiation and apoptosis in a human extravillous trophoblast cell line. Biology of Reproduction, 73, 172–179.

    Article  CAS  PubMed  Google Scholar 

  • Gheorghe, C. P., Goyal, R., Holweger, J. D., & Longo, L. D. (2009). Placental gene expression responses to maternal protein restriction in the mouse. Placenta, 30, 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon, M. C., Zimmerman, P. D., Landon, M. B., Gabbe, S. G., & Kniss, D. A. (1995). Insulin and glucose modulate glucose transporter messenger ribonucleic acid expression and glucose uptake in trophoblasts isolated from first-trimester chorionic villi. American Journal of Obstetrics and Gynecology, 173, 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  • Gude, N. M., Stevenson, J. L., Rogers, S., Best, J. D., Kalionis, B., Huisman, M. A., Erwich, J. J., Timmer, A., & King, R. G. (2003). GLUT12 expression in human placenta in first trimester and term. Placenta, 24, 566–570.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, T., Barth, S., Weiss, U., Mosgoeller, W., & Desoye, G. (1998). Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: A mechanism to protect fetal development? FASEB Journal, 12, 1221–1231.

    CAS  PubMed  Google Scholar 

  • Hahn, T., Hahn, D., Blaschitz, A., Korgun, E. T., Desoye, G., & Dohr, G. (2000). Hyperglycaemia-induced subcellular redistribution of GLUT1 glucose transporters in cultured human term placental trophoblast cells. Diabetologia, 43, 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, M., Sakata, M., Takeda, T., Yamamoto, T., Okamoto, Y., Sawada, K., Kimura, A., Minekawa, R., Tahara, M., Tasaka, K., & Murata, Y. (2004). Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. Journal of Endocrinology, 183, 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen, T., & Clausen, T. (2002). The fetal origins hypothesis: Placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstetricia et Gynecologica Scandinavica, 81, 112–114.

    Article  PubMed  Google Scholar 

  • Illsley, N. P. (2000). Glucose transporters in the human placenta. Placenta, 21, 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Illsley, N. P., Sellers, M. C., & Wright, R. L. (1998). Glycaemic regulation of glucose transporter expression and activity in the human placenta. Placenta, 19, 517–524.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, N., Rosario, F. J., Gaccioli, F., Lager, S., Jones, H. N., Roos, S., Jansson, T., & Powell, T. L. (2013). Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. Journal of Clinical Endocrinology and Metabolism, 98, 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, T., Wennergren, M., & Illsley, N. P. (1993). Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. Journal of Clinical Endocrinology and Metabolism, 77, 1554–1562.

    CAS  PubMed  Google Scholar 

  • Jansson, T., Ylven, K., Wennergren, M., & Powell, T. L. (2002). Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta, 23, 392–399.

    Article  CAS  PubMed  Google Scholar 

  • Janzen, C., Lei, M. Y., Cho, J., Sullivan, P., Shin, B. C., & Devaskar, S. U. (2013). Placental glucose transporter 3 (GLUT3) is up-regulated in human pregnancies complicated by late-onset intrauterine growth restriction. Placenta, 34, 1072–1078.

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux, E., Gulbis, B., Gerlo, E., & Rodeck, C. (1998). Free amino acid distribution inside the first trimester human gestational sac. Early Human Development, 51, 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Khalil, A., Hardman, L., & O Brien, P. (2015). The role of arginine, homoarginine and nitric oxide in pregnancy. Amino Acids, 47, 1715–1727.

    Article  CAS  PubMed  Google Scholar 

  • Kleppa, M. J., Erlenwein, S. V., Darashchonak, N., von Kaisenberg, C. S., & von Versen-Hoynck, F. (2014). Hypoxia and the anticoagulants dalteparin and acetylsalicylic acid affect human placental amino acid transport. PLoS One, 9, e99217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korgun, E. T., Celik-Ozenci, C., Seval, Y., Desoye, G., & Demir, R. (2005). Do glucose transporters have other roles in addition to placental glucose transport during early pregnancy? Histochemistry and Cell Biology, 123, 621–629.

    Article  CAS  PubMed  Google Scholar 

  • Lagarde, M., Liu, M., Vericel, E., Calzada, C., Chen, P., Driss, F., & Guichardant, M. (2014). Docosahexaenoic acid, protectin synthesis: Relevance against atherothrombogenesis. Proceedings of the Nutrition Society, 73, 186–189.

    Article  CAS  PubMed  Google Scholar 

  • Lager, S., Jansson, T., & Powell, T. L. (2014). Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids. American Journal of Physiology – Cellular Physiology, 307, C738–C744.

    Article  CAS  Google Scholar 

  • Luther, J., Milne, J., Aitken, R., Matsuzaki, M., Reynolds, L., Redmer, D., & Wallace, J. (2007). Placental growth, angiogenic gene expression, and vascular development in undernourished adolescent sheep. Biology of Reproduction, 77, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Ogura, K., Sakata, M., Yamaguchi, M., Kurachi, H., & Murata, Y. (1999). High concentration of glucose decreases glucose transporter-1 expression in mouse placenta in vitro and in vivo. Journal of Endocrinology, 160, 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan, U., Grant, F., Goldenberg, T., Zongrone, A., & Martorell, R. (2012). Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: A systematic review. Paediatric and Perinatal Epidemiology, 26(Suppl 1), 285–301.

    Article  PubMed  Google Scholar 

  • Rosario, F. J., Jansson, N., Kanai, Y., Prasad, P. D., Powell, T. L., & Jansson, T. (2011). Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters. Endocrinology, 152, 1119–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujii, H., Khandoker, M. A. M. Y., & Hamano, K.-I. (2001). Lipid in mammalian embryo development. Journal of Mammalian Ova Research, 18, 73–80.

    Article  Google Scholar 

  • von Wolff, M., Ursel, S., Hahn, U., Steldinger, R., & Strowitzki, T. (2003). Glucose transporter proteins (GLUT) in human endometrium: Expression, regulation, and function throughout the menstrual cycle and in early pregnancy. Journal of Clinical Endocrinology and Metabolism, 88, 3885–3892.

    Article  Google Scholar 

  • Weiss, U., Cervar, M., Puerstner, P., Schmut, O., Haas, J., Mauschitz, R., Arikan, G., & Desoye, G. (2001). Hyperglycaemia in vitro alters the proliferation and mitochondrial activity of the choriocarcinoma cell lines BeWo, JAR and JEG-3 as models for human first-trimester trophoblast. Diabetologia, 44, 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Zamudio, S., Torricos, T., Fik, E., Oyala, M., Echalar, L., Pullockaran, J., Tutino, E., Martin, B., Belliappa, S., Balanza, E., & Illsley, N. P. (2010). Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS One, 5, e8551.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duttaroy, A.K., Basak, S. (2016). Glucose and Amino Acid and Their Roles in Placentation. In: Early Nutrition and Lifestyle Factors. Springer, Cham. https://doi.org/10.1007/978-3-319-38804-5_3

Download citation

Publish with us

Policies and ethics