Skip to main content

Triboluminescent Sensors for Polymer-Based Composites

  • Chapter
  • First Online:
Triboluminescence

Abstract

Polymer-based composites are rapidly becoming a part of load bearing components in a structure. Composites due to their high strength-to-weight ratio, high stiffness, and favorable environmental resistance have already gained huge interest in aerospace, automobile, and civil industry. Like every other engineering material, composites experience damage. However, unlike metals, damage experienced by a composite is brittle and does not provide any early signs of rupture unit failure. This is one of the primary disadvantages of using composites as load bearing components. In order to employ composite materials as a permanent replacement of traditional structural materials, health monitoring is essential.

This chapter describes the applications of triboluminescent (TL) materials in damage detection experienced by composites along with current techniques used to manufacture such composites. Finally, the chapter concludes by expressing the challenges and further development opportunities for TL applications in polymer-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Measures, R. (2001). Structural monitoring with fiber optic technology. San Diego, CA: Academic.

    Google Scholar 

  2. Farrar, C. R., & Worden, K. (2007). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences, 365(1851), 303–315.

    Article  Google Scholar 

  3. Longchambon, H. (1925). Recherches expe´rimentales sur les phe´nome`nes de tribo luminescence et de cristalloluminescence. 2e the`se. Propositions donne´es par la Faculte´. impr. Bussie`re, 74, rue Lafayette.

    Google Scholar 

  4. Walton, A. J. (1977). Triboluminescence. Advances in Physics, 26(6), 887–948.

    Article  Google Scholar 

  5. Olawale, D. O., Dickens, T., Sullivan, W. G., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2011). Progress in triboluminescence-based smart optical sensor system. Journal of Luminescence, 131(7), 1407–1418.

    Article  Google Scholar 

  6. Bar-Cohen, Y. (2005). Biomimetics: Biologically inspired technologies. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  7. Greenberg, D., Aminoff, M., & Simon, R. (2002). Clinical neurology. New York: McGraw-Hill.

    Google Scholar 

  8. Ihn, J. B., Chang, F. K., & Speckmann, H. (2001). Built-in diagnostics for monitoring crack growth in aircraft structures. In Key engineering materials, (vol 204, pp. 299–308). Trans Tech Publishers.

    Google Scholar 

  9. Kessler, M. (2007). Self-healing: a new paradigm in materials design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4), 479–495.

    Article  Google Scholar 

  10. Dickens, T. J. (2013). Assessment of triboluminescent materials for intrinsic health monitoring of composite damage. Ph.D. thesis, Florida State University.

    Google Scholar 

  11. Farrar, C. R., & Lieven, N. A. (2007). Damage prognosis: The future of structural health monitoring. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1851), 623–632.

    Article  Google Scholar 

  12. Lopez, I., & Sarigul-Klijn, N. (2010). A review of uncertainty in flight vehicle structural damage monitoring, diagnosis and control: Challenges and opportunities. Progress in Aerospace Sciences, 46(7), 247–273.

    Article  Google Scholar 

  13. Hurlebaus, S., & Gaul, L. (2006). Smart structure dynamics. Mechanical Systems and Signal Processing, 20(2), 255–281.

    Article  Google Scholar 

  14. Djordjevic, B. B. (2009). Nondestructive test technology for the composites. In The 10th International Conference of the Slovenian Society for non-destructive testing (pp. 259–265). Citeseer.

    Google Scholar 

  15. Curie, D. (1963). Luminescence in crystals. ∎: Methuen.

    Google Scholar 

  16. Sage, I., & Bourhill, G. (2001). Triboluminescent materials for structural damage monitoring. Journal of Materials Chemistry, 11, 231–245.

    Article  Google Scholar 

  17. Chandra, B., Bagri, A., & Chandra, V. (2010). Mechanoluminescence response to the plastic flow of coloured alkali halide crystals. Journal of Luminescence, 130(2), 309–314.

    Article  Google Scholar 

  18. Kozytskyi, S., Rimashevskyi, O., & Cheska, T. Y. (1995). Ultrasonic investigation of mechanical properties of polycrystalline ZnS-Mn obtained by self propagating high-temperature synthesis. Materials Science, 30(4), 501–505.

    Article  Google Scholar 

  19. Alzetta, G., Chudacek, I., & Scarmozzino R. (1970). Excitation of triboluminescence by deformation of single crystals. Physica Status Solidi A. 1(4), 775–785.

    Google Scholar 

  20. Chandra, B. (1998). Luminescence of solids edited by DR Vij. ∎: ∎.

    Google Scholar 

  21. O’Hara, P. B., Peter, W. S., & Engelson, C. (2005). Turning on the light: Lessons from luminescence. Journal of chemical education, 82(1), 49.

    Article  Google Scholar 

  22. Auerbach, F. (1899). Kanon der Physik: di Bergriffe, Principien, Satze, Formeln Dimensionsformeln und Konstanten der Physik nach dem neuesten Stande der. Veit & Comp: Wissenschaft systematisch dargestellt.

    MATH  Google Scholar 

  23. Chandra, B. (1985). Squeezing light out of crystals: triboluminescence. Nuclear Tracks and Radiation Measurements (1982), 10(1), 225–241.

    Article  Google Scholar 

  24. Chandra, B. (1996). Luminescence induced by moving dislocations in crystals. Radiation Effects and Defects in Solids, 138(1-2), 119–137.

    Article  Google Scholar 

  25. Chandra, B., Chandra, V., Jha, P., Pateria, D., & Baghel, R. (2015). Is the fracto mechanoluminescence of ZnS: Mn phosphor dominated by charged dislocation mechanism or piezoelectrification mechanism? Luminescence, 31(1), 67–75.

    Google Scholar 

  26. Chandra, B., Tiwari, S., Ramrakhiani, M., & Ansari, M. (1991). Mechanoluminescence in centrosymmetric crystals. Crystal Research and Technology, 26(6), 767–781.

    Article  Google Scholar 

  27. Eddingsaas, N. C., & Suslick, K. S. (2006). Mechanoluminescence: Light from sonication of crystal slurries. Nature, 444(7116), 163–163.

    Article  Google Scholar 

  28. Eddingsaas, N. C., & Suslick, K. S. (2007). Intense mechanoluminescence and gas phase reactions from the sonication of an organic slurry. Journal of the American Chemical Society, 129(21), 6718–6719.

    Article  Google Scholar 

  29. Garcia-Guinea, J., & Correcher, V. (2000). Luminescence spectra of alkali feldspars: influence of crushing on the ultraviolet emission band. Spectroscopy Letters, 33(1), 103–113.

    Article  Google Scholar 

  30. Nishida, J. I., Ohura, H., Kita, Y., Hasegawa, H., Kawase, T., Takada, N., et al. (2015). Phthalimide compounds containing a trifluoromethylphenyl group and electron-donating aryl groups: color-tuning and enhancement of triboluminescence. The Journal of Organic Chemistry

    Google Scholar 

  31. Tauer, K. J., & Lipscomb, W. N. (1952). On the crystal structures, residual entropy and dielectric anomaly of methanol. Acta Crystallographica, 5(5), 606–612.

    Article  Google Scholar 

  32. Tekalur, S. A. (2010). Triboluminescence in sodium chloride. Journal of Luminescence, 130(11), 2201–2206.

    Article  Google Scholar 

  33. Trout, G. J., Moore, D. E., & Hawke, J. G. (1975). Triboluminescence and associated decomposition of solid methanol. The Journal of Physical Chemistry, 79(15), 1519–1527.

    Article  Google Scholar 

  34. Zink, J. I. (1978). Triboluminescence. Accounts of Chemical Research, 11(8), 289–295.

    Article  MathSciNet  Google Scholar 

  35. Heinrich, J. P. (1820). Die Phosphorescenz der Ko¨rper nach allen Unsta¨ nden un- tersucht und erlautert.

    Google Scholar 

  36. Chernov, A. A. (2012). Modern crystallography III: Crystal growth (Vol. 36). ∎: Springer.

    Google Scholar 

  37. De Yoreo, J. J., & Vekilov, P. G. (2003). Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry, 54(1), 57–93.

    Article  Google Scholar 

  38. Lȫffelmann, M., & Mersmann, A. (2002). How to measure supersaturation? Chemical Engineering Science, 57(20), 4301–4310.

    Article  Google Scholar 

  39. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., & Aggarwal, M. D. (2011). Triboluminescent materials for smart sensors. Materials Today, 14(6), 292–293.

    Article  Google Scholar 

  40. Hurt, C., McAvoy, N., Bjorklund, S., & Filipescu, N. (1966). High intensity triboluminescence in europium tetrakis (dibenzoylmethide)-triethylammonium.

    Google Scholar 

  41. Fontenot, R., Bhat, K., Hollerman, W., Aggarwal, M., & Nguyen, K. (2012). Comparison of the triboluminescent yield and decay time for europium dibenzoyl methide triethylammonium synthesized using different solvents. Cryst Eng Comm, 14(4), 1382–1386.

    Article  Google Scholar 

  42. Li, J.-G., Zhu, Q., Li, X., Sun, X., & Sakka, Y. (2011). Colloidal processing of Gd2O3: Eu3+ red phosphor monospheres of tunable sizes: Solvent effects on precipitation kinetics and photoluminescence properties of the oxides. Acta Materialia, 59(9), 3688–3696.

    Article  Google Scholar 

  43. Souza, E., & Muccillo, E. (2009). Effect of solvent on physical properties of samaria-doped ceria prepared by homogeneous precipitation. Journal of Alloys and Compounds, 473(1), 560–566.

    Article  Google Scholar 

  44. Xiu, Z., Li, J.-G., Li, X., Huo, D., Sun, X., Ikegami, T., et al. (2008). Nanocrystalline scandia powders via oxalate precipitation: The effects of solvent and solution pH. Journal of the American Ceramic Society, 91(2), 603–606.

    Article  Google Scholar 

  45. Hollerman, W., Fontenot, R., Bhat, K., Aggarwal, M., Guidry, C., & Nguyen, K. (2012). Comparison of triboluminescent emission yields for 27 luminescent materials. Optical Materials, 34(9), 1517–1521.

    Article  Google Scholar 

  46. Owens, C., Fontenot, R. S., Bhat, K. N., & Aggarwal, M. D. (2014). Effects of added dopants on various triboluminescent properties of europium dibenzoylmethide triethylammonium (EuD4TEA). APS March Meeting Abstracts, 1, 3003.

    Google Scholar 

  47. Uthayarani, K., Sankar, R., & Shashidharan Nair, C. (2008). Growth, spectral and thermal properties of KAP single crystals in the presence of DL-Alanine and L-Methionine amino acid dopants. Crystal Research and Technology, 43(7), 733–739.

    Article  Google Scholar 

  48. Zink, J. I. (1981). Squeezing light out of crystals: Triboluminescence. Naturwis Senschaften, 68(10), 507–512.

    Article  Google Scholar 

  49. Scheiner, M., Dickens, T. J., & Okoli, O. (2015b). Synthesis conditions of europium tetrakis dibenzoylmethide triethylammonium crystals. Crystal Research and Technology.

    Google Scholar 

  50. Chandra, B., Xu, C., Yamada, H., & Zheng, X. (2010). Luminescence induced by elastic deformation of ZnS: Mn nanoparticles. Journal of Luminescence, 130(3), 442–450.

    Article  Google Scholar 

  51. Chakravarty, A., & Phillipson, T. E. (2004). Triboluminescence and the potential of fracture surfaces. Journal of Physics D: Applied Physics, 37(15), 2175.

    Article  Google Scholar 

  52. Sage, I., Badcock, R., Humberstone, L., Geddes, N., Kemp, M., & Bourhill, G. (1999). Triboluminescent damage sensors. Smart Materials and Structures, 8, 504.

    Article  Google Scholar 

  53. Sage, I., Humberstone, L., Oswald, I., Lloyd, P., & Bourhill, G. (2001). Getting light through black composites: embedded triboluminescent structural damage sensors. Smart Materials and Structures, 10, 332.

    Article  Google Scholar 

  54. Hadzic, R., John, S., & Herszberg, I. (1999). Structural integrity analysis of embedded optical fibres in composite structures. Composite Structures, 47(1), 759–765.

    Article  Google Scholar 

  55. Czarnek, R., Guo, Y., Bennett, K., & Claus, R. (1989). Interferometric measurements of strain concentrations induced by an optical fiber embedded in a fiber reinforced composite. In OE/Fiber LASE’88, pp. 43–54. International Society for Optics and Photonics.

    Google Scholar 

  56. Xu, C., Watanabe, T., Akiyama, M., & Zheng, X. (1999a). Artificial skin to sense mechanical stress by visible light emission. Applied Physics Letters, 74(9), 1236–1238.

    Article  Google Scholar 

  57. Bhargava, R., Gallagher, D., Hong, X., & Nurmikko, A. (1994). Optical properties of manganese-doped nanocrystals of ZnS. Physical Review Letters, 72(3), 416.

    Article  Google Scholar 

  58. Womack, F. N., Goedeke, S. M., Bergeron, N.P., Hollerman, W., Allison, S.W. et al. (2003). Measurement of triboluminescence and proton half brightness dose of ZnS:Mn. In Nuclear Science Symposium Conference Record, 2003 IEEE, (Vol 1, pp. 625–628). IEEE.

    Google Scholar 

  59. Hollerman, W., Melespin, C., Fontenot, R., & Wasilewski, P. (2008). Measuring triboluminescence generated by meso-velocity impacts. In Lunar and Planetary Science Conference, (Vol 39, pp. 1018)

    Google Scholar 

  60. Goedeke, S., Allison, S., Womack, F., Bergeron, & Hollerman, W. (2003). Tribolumininescence and its application to space-based damage sensors. In Proceedings of the Propulsion Measurement Sensor Development Workshop, Huntsville, AL.

    Google Scholar 

  61. Breaux, J. A. (2011). Manufacturability of triboluminescent composites: Towards a sensory level component.

    Google Scholar 

  62. Olawale, D. O., Kliewer, K., Okoye, A., Dickens, T. J., Uddin, M. J., & Okol, O. I. (2014b). Real time failure detection in unreinforced cementitious composites with triboluminescent sensor. Journal of Luminescence, 147, 235–241.

    Article  Google Scholar 

  63. Olawale, D. O., Kliewer, K., Okoye, A., Dickens, T., Uddin, M. J., & Okol, O. I. (2014). Getting light through cementitious composites with in situ triboluminescent damage sensor. Structural Health Monitoring, 13(2), 177–189.

    Article  Google Scholar 

  64. Chamis, C. C. (1974). Analysis of the three-point-bend test for materials with un equal tension and compression properties. ∎: National Aeronautics and Space Administration.

    Google Scholar 

  65. Dickens, T., Armbrister, C., Olawale, D., & Okoli, O. (2015). Characterization of triboluminescent enhanced discontinuous glass-fiber composite beams for micro-damage detection and fracture assessment. Journal of Luminescence, 163, 1–7.

    Article  Google Scholar 

  66. Dickens, T. J. & Okoli, O. I (2011). Enabling damage detection: manufacturing composite laminates doped with dispersed triboluminescent materials. Journal of Reinforced Plastics and Composites, 0731684411413490.

    Google Scholar 

  67. Frketic, J. B., Ariza, N., Olawale, D., Okoli, O., Dickens, T. (2015, December). Measurement of impact force for triboluminescent-enhanced composites by modified impulse method. Accepted.

    Google Scholar 

  68. Joshi, K., Frketic, J., Raley, M., Olawale, D., Dickens, T., & Okoli, O. (2015). Screening failure detection of structural composite systems: Embedded triboluminescent structronic wires. Structural Health Monitoring.

    Google Scholar 

  69. Mertz, D. & Gillespie J. (1996). Rehabilitation of steel bridge members through the application of advanced composites. Final Report. Technical report, NCHRP-93-ID01.

    Google Scholar 

  70. Joshi, K., Frketic, J. B., Olawale, D., & Dickens, T. (2015). Damage monitoring of CFRP retrofits using triboluminescent optical fiber sensors. In SPIE smar structures and materials+ nondestructive evaluation and health monitoring (pp. 943520–943520). International Society for Optics and Photonics.

    Google Scholar 

  71. Olawale, D. O., Bhakta, D., Hammel, E., Yan, J., Carey, D., Dickens, T., et al. (2015). Triboluminescent composite with in-situ impact sensing capability. Dallas, TX: CAMX.

    Google Scholar 

  72. Dickens, T., Breaux, J., Olawale, D., Sullivan, W., & Okoli, O. (2012). Effects of ZnS: Mn concentrated vinyl ester matrices under flexural loading on the triboluminescent yield. Journal of Luminescence, 132(7), 1714–1719.

    Article  Google Scholar 

  73. Joshi, K., Campbell, C., Mishra, S., Vanli, A., Dickens, T. (2016). Correlating acoustic and triboluminescent emissions with flexural failure modes in ZnS:Mn doped composite. In Preparation.

    Google Scholar 

  74. Hollerman, W., Goedeke, S., Bergeron, N., Moore, R., Allison, S., & Lewis, L. (2005). Emission spectra from ZnS: Mn due to low velocity impacts. In Optics & Photonics 2005, (pp. 58970F–58970F). International Society for Optics and Photonics.

    Google Scholar 

  75. Ryu, D., Castaño, N & Vedera, K. (2015). Mechanoluminescent composites towards autonomous impact damage detection of aerospace structures. Structural Health Monitoring.

    Google Scholar 

  76. Leelachao, S., Muraishi, S., Sannomiya, T., Shi, J., & Nakamura, Y. (2016). Correlation of triboluminescence and contact stresses in ZnS: Mn/polymeric matrix composite. Journal of Luminescence, 170, 24–29.

    Article  Google Scholar 

  77. Hosford, W. F. (2004). A brick-wall model for calculating Young’s modulus of a particulate composite. Metallurgical and Materials Transactions A, 35(7), 2191–2192.

    Article  Google Scholar 

  78. Xu, C., Ueno, N., Terasaki, N., & Yamada, H. (2012). Mechanoluminescence and novel structural health diagnosis. Tokyo: NTS Shuppan.

    Google Scholar 

  79. Xu, C., Watanabe, T., Akiyama, M., & Zheng, X. (1999b). Preparation and characteristics of highly triboluminescent ZnS film. Materials Research Bulletin, 34(10), 1491–1500.

    Article  Google Scholar 

  80. Zhang, J.-C., Xu, C.-N., Kamimura, S., Terasawa, Y., Yamada, H., & Wang, X. (2013). An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses. Optics EXPRESS, 21(11), 12976–12986.

    Article  Google Scholar 

  81. Someya, S., Ishii, K., Saeki, M., & Munakata, T. (2013). Lifetime-based measurement of stress using mechanoluminescence of SrAl2O4: Eu2+. Optics Letters, 38(7), 1095–1097.

    Article  Google Scholar 

  82. Chandra, V., & Chandra, B. (2011). Suitable materials for elastico mechanoluminescence-based stress sensors. Optical Materials, 34(1), 194–200.

    Article  Google Scholar 

  83. Jia, Y., Yei, M., & Jia, W. (2006). Stress-induced mechanoluminescence in SrAl2O4: Eu2+, Dy3+. Optical Materials, 28(8), 974–979.

    Article  Google Scholar 

  84. Deodatis, G., Ellingwood, B. R., & Frangopol, D. M. (2013). Safety, reliability, risk and life-cycle performance of structures and infrastructures. Boca Raton, FL: CRC Press.

    Google Scholar 

  85. Dugnani, R. & Malkin, M. (2003). Proceedings of the 4th International Workshop on Structural Health Monitoring. Stanford University, Stanford, CA (Un published).

    Google Scholar 

  86. Gibson, R. F. (2010). A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures, 92(12), 2793–2810.

    Article  Google Scholar 

  87. Okoli, O., & Smith, G. (1998). Failure modes of fibre reinforced composites: The effects of strain rate and fibre content. Journal of Materials Science, 33(22), 5415–5422.

    Article  Google Scholar 

  88. Okoli, O. & Olawale D. (2012, October 19). Triboluminescent optical fiber sensor US Patent App. 13/656,246.

    Google Scholar 

  89. Okoli, O., Wang, B., & Dickens, T. J (2010, March 5). Systems, methods, and apparatus for structural health monitoring. US Patent 8,387,469.

    Google Scholar 

  90. Scheiner, M., Dickens, T. J., & Okoli, O. (2015a). Progress towards self-healing polymers for composite structural applications. Polymer.

    Google Scholar 

  91. Aida, T., Meijer, E., & Stupp, S. (2012). Functional supramolecular polymers. Science, 335(6070), 813–817.

    Article  Google Scholar 

  92. Yuan, C. E., Rong, M. Z., Zhang, M. Q., Zhang, Z. P., & Yuan, Y. C. (2011). Self healing of polymers via synchronous covalent bond fission/radical recombination. Chemistry of Materials, 23(22), 5076–5081.

    Article  Google Scholar 

  93. Breaux, J. A., Harmon, N., Joshi, K., & Dickens, T. (2015). Correlation study on impact force and TL emissions in enhanced glass fiber plates. Technical report. Florida State University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik J. Dickens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Joshi, K., Scheiner, M., Olawale, D.O., Dickens, T.J. (2016). Triboluminescent Sensors for Polymer-Based Composites. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics