Skip to main content

Treatment of Chlorinated Benzenes in Different Pilot Scale Constructed Wetlands

  • Chapter
  • First Online:
Natural and Constructed Wetlands

Abstract

Chlorinated benzenes (CBs) are common pollutants in groundwater due to their broad usage in industry and agriculture. Remediation of CBs from contaminated groundwater is of great importance. Biodegradation has proved to be a suitable approach in eliminating CBs from polluted water, and constructed wetland (CW) is an alternative as cost efficient technology to remove CBs from wastewater. In the present study, a comparison covering five growing seasons (from May 2006 to November 2010) was carried out among four pilot-scale CWs: (1) unplanted horizontal subsurface flow (HSSF) CW; (2) planted HSSF CW; (3) planted HSSF CW with tidal flow; (4) hydroponic root mat (HRM). The unplanted HSSF CW was not efficient for CBs removal, with removal efficiency less than 23 % for the four CBs, and no capability to remove 1,2-DCB. Planted HSSF CW exhibited significantly better treatment performance than the unplanted HSSF CW, and the CBs removal efficiency can be enhanced to some extend (especially after 3 m from the flow path) when running under tidal flow operation. Highest CBs removal efficiency was reached in the HRM system, with mean removal rates for monochlorobenzene, 2-chlorotoluene, 1,4-dichlorobenzene (DCB) and 1,2-DCB were 219, 0.92, 7.48 and 0.86 mg/m2/d, respectively. In conclusion, the HRM is the best variant CW to treat chlorinated benzenes, and it can be an option for the treatment of pollutants which prefer aerobic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Braeckevelt, M., Rokadia, H., Mirschel, G., Weber, S., Imfeld, G., Stelzer, N., Kuschk, P., Kästner, M., & Richnow, H.H. (2007a). Biodegradation of chlorobenzene in a constructed wetland treating contaminated groundwater. Water Science and Technology, 56(3), 57–62.

    Google Scholar 

  • Braeckevelt, M., Rokadia, H., Imfeld, G., Stelzer, N., Paschke, H., Kuschk, P., Kästner, M., Richnow, H.-H., & Weber, S. (2007b). Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland. Environmental Pollution, 148(2), 428–437.

    Google Scholar 

  • Braeckevelt, M., Mirschel, G., Wiessner, A., Rueckert, M., Reiche, N., Vogt, C., Schultz, A., Paschke, H., Kuschk, P., & Kaestner, M. (2008). Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland. Ecological Engineering, 33(1), 45–53.

    Article  Google Scholar 

  • Braeckevelt, M., Reiche, N., Trapp, S., Wiessner, A., Paschke, H., Kuschk, P., & Kaestner, M. (2011). Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater. Ecological Engineering, 37(6), 903–913.

    Article  Google Scholar 

  • Chen, Z., Kuschk, P., Reiche, N., Borsdorf, H., Kästner, M., & Köser, H. (2012). Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE. Journal of Hazardous Materials, 209–210, 510–515.

    Article  PubMed  Google Scholar 

  • Chen, Z., Kuschk, P., Paschke, H., Kastner, M., & Koser, H. (2015). The dynamics of low-chlorinated benzenes in a pilot-scale constructed wetland and a hydroponic plant root mat treating sulfate-rich groundwater. Environmental Science and Pollution Research, 22(5), 3886–3894.

    Article  CAS  PubMed  Google Scholar 

  • Cottin, N., & Merlin, G. (2010). Fate of chlorinated benzenes in laboratory peat and pozzolana filters. Water, Air, & Soil Pollution, 213(1–4), 425–435.

    Article  CAS  Google Scholar 

  • Faure, M., San Miguel, A., Ravanel, P., & Raveton, M. (2012). Concentration responses to organochlorines in Phragmites australis. Environmental Pollution, 164, 188–194.

    Article  CAS  PubMed  Google Scholar 

  • Green, M., Friedler, E., Ruskol, Y., & Safrai, I. (1997). Investigation of alternative method for nitrification in constructed wetlands. Water Science and Technology, 35, 63–70.

    Article  CAS  Google Scholar 

  • Headley, T.R., & Tanner, C.C. (2012). Constructed wetlands with floating emergent macrophytes: An innovative stormwater treatment technology. Critical Reviews in Environmental Science and Technology, 42(21), 2261–2310.

    Article  CAS  Google Scholar 

  • Kadlec, R.H., & Wallace, S. (2009). Treatment wetlands. Second edition, Boca Raton: CRC Press.

    Google Scholar 

  • Keefe, S.H., Barber, L.B., Runkel, R.L., & Ryan, J.N. (2004). Fate of volatile organic compounds in constructed wastewater treatment wetlands. Environmental Science & Technology, 38(7), 2209–2216.

    Article  CAS  Google Scholar 

  • Lee, S., Pardue, J.H., Moe, W.M., & Kim, D.J. (2009). Effect of sorption and desorption-resistance on biodegradation of chlorobenzene in two wetland soils. Journal of Hazardous Materials, 161(1), 492–498.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod, C.J.A., Reid, B.J., & Semple, K.T. (1999). The fate of chlorinated organic pollutants in a reed-bed system. In Phytoremediation and innovative strategies for specialized remedial applications: The fifth international in situ and on-site bioremediation symposium., April 19–22, 1999, Batelle Press: Columbus.

    Google Scholar 

  • Pardue, J.H., Kassenga, G., & Shin, W.S. (1999). Design approaches for chlorinated VOC treatment wetland. In Wetlands and remediation: An international conference (pp. 301–308). Columbus: Batelle Press.

    Google Scholar 

  • San Miguel, A., Ravanel, P., & Raveton, M. (2013). A comparative study on the uptake and translocation of organochlorines by Phragmites australis. Journal of Hazardous Materials, 244–245, 60–69.

    Article  PubMed  Google Scholar 

  • Schmidt, M., Wolfram, D., Birkigt, J., Ahlheim, J., Paschke, H., Richnow, H.-H., & Nijenhuis, I. (2014). Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems. Science of The Total Environment, 472, 185–193.

    Google Scholar 

  • Sun, G., Gray, K.R., Biddlestone, A.J., & Cooper, D.J. (1999). Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system. Water Science and Technology, 40, 139–146.

    Google Scholar 

  • Tanner, C.C., D’Eugenio, J., McBride, G.B., Sukias, J.P.S., & Thompson, K. (1999). Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms. Ecological Engineering, 12(1–2), 67–92.

    Article  Google Scholar 

  • USEPA. (2002). National primary drinking water standards. Office of water (4606), EPA 816-F-01-007. Washington, DC: USEPA.

    Google Scholar 

  • Van de Moortel, A., Meers, E., De Pauw, N., & Tack, F. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water, Air, & Soil Pollution, 212(1), 281–297.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2011). Constructed wetlands for wastewater treatment: Five decades of experience. Environmental Science and Technology, 45(1), 61–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Helmholtz Centre for Environmental Research – UFZ within the scope of the SAFIRA II Research Programme. The authors are grateful to H. Paschke, J. Ahlheim, S. Täglich, and O. Thiel for their assistance in the field and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, Z., Vymazal, J., Kuschk, P. (2016). Treatment of Chlorinated Benzenes in Different Pilot Scale Constructed Wetlands. In: Vymazal, J. (eds) Natural and Constructed Wetlands. Springer, Cham. https://doi.org/10.1007/978-3-319-38927-1_16

Download citation

Publish with us

Policies and ethics