Skip to main content

Abduction in One Intelligence Test. Types of Reasoning Involved in Solving Raven’s Advanced Progressive Matrices

  • Conference paper
  • First Online:
Model-Based Reasoning in Science and Technology

Abstract

Given that Raven’s Advanced Progressive Matrices (APM) as an intelligence test with robust psychometric properties is considered to be a good measure of reasoning ability component of general intelligence, particularly its fluid factor, one would expect that uncovering the determinants of APM performance, especially reasoning patterns, could significantly contribute to understanding of intelligence. Our aim in this study was to identify types of reasoning processes involved in solving Raven’s Advanced Progressive Matrices test. To this end we carried out two studies: one involving eliciting verbal protocols in the form of Socratic tutorial dialogues and one involving controlling eye-fixation patterns. Results suggest that hypotheses generation and testing, involved in solving APM tasks, essentially amounts to abductive reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajdukiewicz, K. (1974). Pragmatic logic (O. Wojtasiewicz, trans.). Dordrecht: D. Reidel.

    Google Scholar 

  • Blair, C. (2010). Fluid cognitive abilities and general intelligence. In R. M. Lerner, W. F. Overton, A. M. Freund & M. E. Lamb (Eds.), The handbook of life-span development. Wiley.

    Google Scholar 

  • Bors, D., & Stokes, T. (1998). Raven’s Advanced Progressive Matrices: Norms for first-year university students and the development of a short form. Educational and Psychological Measurement, 58(3), 382–398.

    Article  Google Scholar 

  • Carpenter, P., Just, M., & Shell, P. (1990). What one intelligence test measures: a theoretical account of the processing in the raven progressive matrices test. Psychological Review, 97(3), 404–431.

    Article  Google Scholar 

  • Chan, C. S. (2014). Style and creativity in design (Vol. 17). Berlin: Springer.

    Google Scholar 

  • DeShon, R., Chan, D., & Weissbein, D. (1995). Verbal overshadowing effects on Raven’s Advanced Progressive Matrices: Evidence for multidimensional performance determinants. Intelligence, 21(2), 135–155.

    Article  Google Scholar 

  • Forbus, K., Lovett, A., & Usher, J. (2010). A structure-mapping model of Raven’s Progressive Matrices. Proceedings of CogSci, 10, 2761–2766.

    Google Scholar 

  • Gabbay, D., & Woods, J. (2005). The practical turn in logic. In G. M. Gabbay & F. Guenthner (Eds.), Handbook of Philosophical Logic (2nd Ed., pp. 15–122). Berlin: Springer.

    Google Scholar 

  • Gittler, G., & Wuerfeltest D. (1990). Ein rasch-skalierter test zur messung des raeumlichen vorstellungsvermoegens. Theoretische grundlagen und manual. Beltz Test, Weinheim.

    Google Scholar 

  • Hayes, J. (1978). Cognitive psychology: Thinking and creating. Belmont: Dorsey.

    Google Scholar 

  • Kunda, M., McGreggor, K., & Goel, A. (2010). Taking a look (literally!) at the raven’s intelligence test: Two visual solution strategies. In Proceedings of 32nd Annual Meeting of the Cognitive Science Society, Portland.

    Google Scholar 

  • Kunda, M., McGreggor, K., & Goel, A. (2012). Reasoning on the Raven’s Advanced Progressive Matrices test with iconic visual representations. In 34th Annual Conference of the Cognitive Science Society (pp. 1828–1833).

    Google Scholar 

  • Kunda, M., McGreggor, K., & Goel, A. (2013). A computational model for solving problems from the raven’s progressive matrices intelligence test using iconic visual representations. Cognitive Systems Research, 22, 47–66.

    Article  Google Scholar 

  • Lane, S., & Schooler, J. (2004). Skimming the surface verbal overshadowing of analogical retrieval. Psychological Science, 15(11), 715–719.

    Article  Google Scholar 

  • Magnani, L. (2009). Abductive cognition: The epistemological and eco-cognitive dimensions of hypothetical reasoning (Vol. 3). Berlin: Springer Science and Business Media.

    Google Scholar 

  • Marr, D., & Vision, A. (1982). A computational investigation into the human representation and processing of visual information. WH San Francisco: Freeman and Company.

    Google Scholar 

  • Orzechowski, J., Nęcka, E., & Szymura, B. (2008). Psychologia poznawcza. Wydawnictwo Szkoly Wyższej Psychologii Spolecznej “Academica”.

    Google Scholar 

  • Preckel, F., & Thiemann, H. (2003). Online-versus paper-pencil version of a high potential intelligence test. Swiss Journal of Psychology/Schweizerische Zeitschrift für Psychologie/Revue Suisse de Psychologie, 62(2), 131.

    Google Scholar 

  • Rasmussen, D., & Eliasmith, Ch. (2011). A neural model of rule generation in inductive reasoning. Topics in Cognitive Science, 3(1), 140–153.

    Article  Google Scholar 

  • Raven, J., Raven, J., & Court, J. (2003a). Manual for Raven’s Progressive Matrices and vocabulary scales (Section 1: General overview). San Antonio, TX: Harcourt Assessment.

    Google Scholar 

  • Raven, J., Raven, J., & Court, J. (2003b). Manual for Raven’s Progressive Matrices and vocabulary scales (Section 4: Advanced progressive matrices). San Antonio, TX: Harcourt Assessment.

    Google Scholar 

  • Reitman, W. (1965). Cognition and thought: An information processing approach. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Ricco, R., & Overton, W. (2011). Dual systems competence–procedural processing: A relational developmental systems approach to reasoning. Developmental Review, 31(2), 119–150.

    Article  Google Scholar 

  • Roberts, M., Meo, M., & Marucci, F. (2007). Element salience as a predictor of item difficulty for Raven’s Progressive Matrices. Intelligence, 35(4), 359–368.

    Article  Google Scholar 

  • Schurz, G. (2008). Patterns of abduction. Synthese, 164(2), 201–234.

    Article  Google Scholar 

  • Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence, 4(3–4), 181–201.

    Article  Google Scholar 

  • Stanovich, K. (1999). Who is rational? Studies of individual differences in reasoning. Park Drive: Psychology Press.

    Google Scholar 

  • Stenning, K., & Van Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge: MIT Press.

    Google Scholar 

  • Thagard, P. (2000). How scientists explain disease. Princeton: Princeton University Press.

    Google Scholar 

  • Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive Science, 22(1), 1–24.

    Article  Google Scholar 

  • Urbański, M. (2009). Rozumowania abdukcyjne. Modele i procedury. Adam Mickiewicz University Press, Poznań.

    Google Scholar 

  • Urbański, M., Paluszkiewicz, K. & Urbańska, J. (2013). Deductive reasoning and learning: A cross-curricular study. Research report. Institute of Psychology, Adam Mickiewicz University.

    Google Scholar 

  • Urbański, M. & Żyluk, N. (2016). Sets of situations, topics, and question relevance. Research report. Institute of Psychology, Adam Mickiewicz University.

    Google Scholar 

  • Urbański, M., Żyluk, N., Paluszkiewicz, K., Urbańska, J. (2016). A formal model of erotetic reasoning in solving somewhat ill-defined problems. In D. Mohammed & M. Lewiński (Eds.), Argumentation and Reasoned Action. Proceedings of the 1st European Conference on Argumentation. London: College Publications (in print).

    Google Scholar 

  •  Verguts, T., & De Boeck, P. (2002). The induction of solution rules in Raven’s Progressive Matrices test. European Journal of Cognitive Psychology, 14(4), 521–547.

    Article  Google Scholar 

  • Vigneau, F., & Bors, D. (2008). The quest for item types based on information processing: An analysis of Raven’s Advanced Progressive Matrices, with a consideration of gender differences. Intelligence, 36(6), 702–710.

    Article  Google Scholar 

  • Wiley, J., Loesche, P., & Hasselhorn, M. (2015). How knowing the rules affects solving the Raven Advanced Progressive Matrices test. Intelligence, 48, 58–75.

    Article  Google Scholar 

  • Williams, J., & McCord, D. (2006). Equivalence of standard and computerized versions of the Raven Progressive Matrices test. Computers in Human Behavior, 22(5), 791–800.

    Article  Google Scholar 

  • Wiśniewski, A. (2013). Questions, inferences, and scenarios. London: College Publications.

    Google Scholar 

Download references

Acknowledgments

Research reported in this paper were supported by the National Science Centre, Poland (DEC-2013/10/E/HS1/00172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Urbański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kisielewska, M., Urbański, M., Paluszkiewicz, K. (2016). Abduction in One Intelligence Test. Types of Reasoning Involved in Solving Raven’s Advanced Progressive Matrices. In: Magnani, L., Casadio, C. (eds) Model-Based Reasoning in Science and Technology. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-38983-7_23

Download citation

Publish with us

Policies and ethics