Skip to main content

Three-Dimensional Analysis of Vehicle Stability Using Graph Theory

  • Chapter
  • First Online:
Graph-Based Modelling in Engineering

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 42))

Abstract

Vehicle stability is a widely studied topic today. It is crucial that we develop a better understanding of one of the main problems of vehicular accident rate problems throughout the world: the rollover accident. The main goal for researchers is to determine a way to predict vehicle behaviour under a variety of circumstances. Davies method is a mathematical tool that allows the static and kinematic analysis of any kind of mechanisms, as well as we can find in vehicle suspensions. This method uses the Graph theory that enables kinematic chain representation by means of a graph for later analysis. In this paper we present the vehicle stability kinematic analysis using Graph theory, Screw theory and the Davies method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gillespie, T.D.: Fundamentals of vehicle dynamics. In: SAE International, 7th ed., ISBN1560911999 (1992)

    Google Scholar 

  2. Hac, A.: Rollover stability index including effects of suspension design. In: SAE International, SAE 2002 World Congress. Detroit, March 4-7 (2002)

    Google Scholar 

  3. Winkler, C.: Rollover of heavy commercial vehicles. In: UMTRI Research Review. The University of Michigan Transportation Research Institute, vol. 31, issue no. 4, pp. 1–20 (2000)

    Google Scholar 

  4. Lee, U.: A study on a method for predicting the vehicle controllability and stability using the screw axis theory. Ph.D. thesis. Hanyang University. Seoul, South Korea (2001)

    Google Scholar 

  5. Bidaud, P., Benamar, F. Poulain, T.: Kineto-static Analysis of an Articulated Six-wheel Rover. Climbing and Walking Robots, pp. 475–484. Springer Link (2006)

    Google Scholar 

  6. Erthal, J.: Modelo Cinestático para Análise de Rolagem em Veículos. Ph.D. These. Federal University of Santa Catarina. Florianópolis, Brazil (2010)

    Google Scholar 

  7. Mejia, L., Simas, H., Martins, D.: Force Capability Maximization of a 3RRR Symmetric Parallel Manipulator by Topology Optimization. 22nd International Congress of Mechanical Engineering (COBEM 2013), November 3–7, Ribeirão Preto, SP, Brazil (2013)

    Google Scholar 

  8. Davies, T. H.: The 1887 committee meets again. Subject: freedom and constraint. In: Ball 2000 Conference. Cambridge: Cambridge University Press, 56 (2000)

    Google Scholar 

  9. Tsai, L.-W.: Robot Analysis: the Mechanics of Serial and Parallel Manipulators. Wiley, New York. ISBN 0-471-32593-7 (1999)

    Google Scholar 

  10. Cazangi, H. R.: Aplicação do Método de Davies para Análise Cinemática e Estática de Mecanismos com Múltiplos Graus de Liberdade. Master’s thesis. Federal University of Santa Catarina. Florianópolis, Brazil (2008)

    Google Scholar 

  11. Davies, T.H.: Coupling, coupling networks and their graphs. Mech. Mach. Theory 30(7), 1001–1012 (1995)

    Article  Google Scholar 

  12. Tsai, L.-W.: Mechanism Design: Enumeration of Kinematic Structures According to Function. London, CRC Press. ISBN 0849309018 (2001)

    Google Scholar 

  13. Davies, T.H.: Kirchhoff’s circulation law applied to multi-loop kinematic chains. Mech. Mach. Theory 16(3), 171–183 (1981)

    Article  Google Scholar 

  14. Rill, G.: Road Vehicle Dynamics: Fundamentals and Modeling. CRC Press, ISBN 978-1-4398-3898-3 (2011)

    Google Scholar 

  15. Jazar, R.: Vehicle Dynamics: Theory and Application. 2nd edn. Springer, ISBN 978-1-4614-8544-5 (2014)

    Google Scholar 

  16. Pacejka, H.: Tire and Vehicle Dynamics. Published by Elsevier Ltd, 3rd ed. ISBN 9780080970165 (1995)

    Google Scholar 

  17. Heyman, J.: Basic Structural Theory. Cambridge: Cambridge University Press, 1st edn., ISBN-13 978-0-511-39692-2 (2008)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Brazilian governmental agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Moreno .

Editor information

Editors and Affiliations

Appendices

Appendix A. Wrench Parameters of the Mechanism

Constraints and forces

s i

\( s_{0i} \)

F x1

1 0 0

0

0

0

F y1

0 1 0

0

0

0

F z1

0 0 1

0

0

0

M y1

0 1 0

0

0

0

M z1

0 0 1

0

0

0

F z2

0 0 1

0

t cos θ 1

t sin θ 1

F z3

0 0 1

L

t cos θ 4

t sin θ 4

F x4

1 0 0

L

0

0

F y4

0 1 0

L

0

0

F z4

0 0 1

L

0

0

M y4

0 1 0

L

0

0

M z4

0 0 1

L

0

0

W

0 0 −1

a 1

t/2

h

m a y

0 −1 0

a 1

t/2

h

Appendix B. The Equations System from the Statics of the Mechanism

$$\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & t\cos \theta _{1} & t\cos \theta _{4} & 0 & 0 & 0 & 0 & 0 & | & { - {\raise0.7ex\hbox{$t$} \!\mathord{\left/ {\vphantom {t 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} & h \\ 0 & 0 & 0 & 1 & 0 & 0 & L & 0 & 0 & L & 1 & 0 & | & { - a_{1} } & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & - L & 0 & 0 & 1 & | & 0 & {a_{1} } \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & | & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & | & 0 & { - 1} \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & | & { - 1} & 0 \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}c} {F_{{x1}} } \\ {F_{{y1}} } \\ {F_{{z1}} } \\ {M_{{y1}} } \\ {M_{{z1}} } \\ {F_{{z2}} } \\ {F_{{z3}} } \\ {F_{{x4}} } \\ {F_{{y4}} } \\ {F_{{z4}} } \\ {M_{{y4}} } \\ {M_{{z4}} } \\ {\text{--}} \\ {\text{W}} \\ {ma_{y} } \\ \end{array} } \right] = \left[ 0 \right]_{{6 \times 1}}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moreno, G.G., Barreto, R.L.P., Vieira, R.S., Nicolazzi, L., Martins, D. (2017). Three-Dimensional Analysis of Vehicle Stability Using Graph Theory. In: Zawiślak, S., Rysiński, J. (eds) Graph-Based Modelling in Engineering. Mechanisms and Machine Science, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-39020-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39020-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39018-5

  • Online ISBN: 978-3-319-39020-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics