Skip to main content

On Convergence and Efficiency in the Resolution of Systems of Nonlinear Equations from a Local Analysis

  • Chapter
  • First Online:
Advances in Iterative Methods for Nonlinear Equations

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 10))

Abstract

The aim of this chapter is to provide an overview of theoretical results and numerical tools in some iterative schemes to approximate solutions of nonlinear equations. Namely, we examine the concept of iterative methods and their local order of convergence, numerical parameters that allow us to assess the order, and the development of inverse operators (derivative and divided differences). We also provide a detailed study of a new computational technique to analyze efficiency. Finally, we end the chapter with a consideration of adaptive arithmetic to accelerate computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitken, A.: On Bernoulli’s numerical solution of algebraic equations. Proc. R. Soc. Edinb. 46, 289–305 (1926)

    Article  MATH  Google Scholar 

  2. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarrat iterations. Aequationes Math. 69, 212–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyros, I.K., Gutiérrez, J.M.: A unified approach for enlarging the radius of convergence for Newton’s method and applications. Nonlinear Funct. Anal. Appl. 10, 555–563 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K., Gutiérrez, J.M.: A unifying local and semilocal convergence analysis of Newton-like methods. Adv. Nonlinear Var. Inequal. 10, 1–11 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Chung, C.: Some fourth-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 195, 454–459 (2008)

    Article  MathSciNet  Google Scholar 

  6. Ezquerro, J.A., Grau-Sánchez, M., Grau, A., Hernández, M.A., Noguera, M., Romero, N.: On iterative methods with accelerated convergence for solving systems of nonlinear equations. J. Optim. Theory Appl. 151, 163–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ezquerro, J.A., Grau-Sánchez, M., Grau, A., Hernández, M.A., Noguera, M.: Analysing the efficiency of some modifications of the secant method. Comput. Math. Appl. 64, 2066–2073 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ezquerro, J.A., Grau-Sánchez, M., Grau, A., Hernández, M.A.: Construction of derivative-free iterative methods from Chebyshev’s method. Anal. Appl. 11 (3), 1350009 (16 pp.) (2013)

    Google Scholar 

  9. Ezquerro, J.A., Grau-Sánchez, M., Hernández, M.A., Noguera, M.: Semilocal convergence of secant-like methods for differentiable and nondifferentiable operator equations. J. Math. Anal. Appl. 398, 100–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33 (2007). doi:10.1145/1236463.1236468

    Google Scholar 

  11. Grau, M., Díaz-Barrero, J.L.: A weighted variant family of Newton’s method with accelerated third-order convergence. Appl. Math. Comput. 186, 1005–1009 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grau-Sánchez, M., Gutiérrez, J.M.: Zero-finder methods derived from Obreshkov’s techniques. Appl. Math. Comput. 215, 2992–3001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grau-Sánchez, M., Noguera, M.: A technique to choose the most efficient method between secant method and some variants. Appl. Math. Comput. 218, 6415–6426 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett. 23, 472–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grau-Sánchez, M., Grau, A., Díaz-Barrero, J.L.: On computational order of convergence of some multi-precision solvers of nonlinear systems of equations. ArXiv e-prints (2011). Available at http://arxiv.org/pdf/1106.0994.pdf

    Google Scholar 

  16. Grau-Sánchez, M., Grau, A., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 236, 1259–1266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grau-Sánchez, M., Grau, A., Noguera, M.: Ostrowski type methods for solving systems of nonlinear equations. Appl. Math. Comput. 218, 2377–2385 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grau-Sánchez, M., Grau, A., Noguera, M.: Frozen divided differences scheme for solving systems of nonlinear equations. J. Comput. Appl. Math. 235, 1739–1743 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grau-Sánchez, M., Grau, A., Noguera, M., Herrero, J.R.: On new computational local orders of convergence. Appl. Math. Lett. 25, 2023–2030 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grau-Sánchez, M., Grau, A., Noguera, M., Herrero, J.R.: A study on new computational local orders of convergence. ArXiv e-prints (2012). Available at http://arxiv.org/pdf/1202.4236.pdf

    Google Scholar 

  21. Grau–Sánchez, M., Noguera, M., Gutiérrez, J.M.: Frozen iterative methods using divided differences “à la Schmidt-Schwetlick”. J. Optim. Theory Appl. 160, 93–948 (2014)

    Google Scholar 

  22. Hueso, J.L., Martínez, E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jay, L.O.: A note on Q-order of convergence. BIT 41, 422–429 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karatsuba A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Proc. USSR Acad. Sci. 145, 293–294 (1962). Transl. Acad. J. Phys. Dokl. 7, 595–596 (1963)

    Google Scholar 

  25. King, R.F.: A family of fourth-order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kurchatov, V.A.: On a method of linear interpolation for the solution of functional equations. Dokl. Akad. Nauk SSSR 198, 524–526 (1971). Transl. Sov. Math. Dokl. 12, 835–838 (1971)

    Google Scholar 

  27. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    MATH  Google Scholar 

  28. Ostrowski, A.M.: Solutions of Equations and System of Equations. Academic, New York (1960)

    MATH  Google Scholar 

  29. Petković, M.S.: Remarks on “On a general class of multipoint root-finding methods of high computational efficiency”. SIAM J. Numer. Anal. 49, 1317–1319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Potra, F.A.: A characterisation of the divided differences of an operator which can be represented by Riemann integrals. Revue d’analyse numérique et de la théorie de l’approximation 2, 251–253 (1980)

    MathSciNet  MATH  Google Scholar 

  31. Potra, F.A., Pták, V.: A generalization of Regula Falsi. Numer. Math. 36, 333–346 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Potra, F.A., Pták, V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, vol. 103. Pitman Advanced Publishing Program, Boston (1984)

    Google Scholar 

  33. Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  34. Schmidt, J.W., Schwetlick, H.: Ableitungsfreie Verfahren mit höherer Konvergenzgeschwindigkeit. Computing 3, 215–226 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870). Translated by G.W. Stewart, On Infinitely Many Algorithms for Solving Equations (1998). Available at http://drum.lib.umd.edu/handle/1903/577

  36. Shakno, S.M.: On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. J. Comput. Appl. Math. 231, 222–335 (2009)

    Article  MathSciNet  Google Scholar 

  37. Sharma, J.R., Arora, H.: On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. The MPFR library 3.0.0. Timings in http://www.mpfr.org/mpfr-3.0.0/timings.html

  39. The MPFR library 3.1.0. Available in http://www.mpfr.org

  40. Tornheim, L.: Convergence of multipoint iterative methods. J. ACM 11, 210–220 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  42. Wall, D.D.: The order of an iteration formula. Math. Tables Aids Comput. 10, 167–168 (1956)

    MathSciNet  MATH  Google Scholar 

  43. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Grau-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grau-Sánchez, M., Noguera, M. (2016). On Convergence and Efficiency in the Resolution of Systems of Nonlinear Equations from a Local Analysis. In: Amat, S., Busquier, S. (eds) Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-39228-8_10

Download citation

Publish with us

Policies and ethics